• Title/Summary/Keyword: 혼합 탄성유체윤활

Search Result 5, Processing Time 0.019 seconds

유압베인펌프의 마찰특성

  • 정재연;이종순;김장현;이봉구
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.22-28
    • /
    • 1989
  • 유압베인펌프는 토출유량이 많고 소형으로 동력밀도는 높으나 토출압력면에스는 피스톤식 펌프에 뒤지기 때문에 발생압력의 고압화에 대한 연구가 계속되어 왔다. 유압장치의 경제적인 압력으로서 $300kgf/cm^2$가 제시되어 있는 가운데, 유압베인펌프의 고압화의 연구가 진행중에 있는 점, 또한 최근들어 에너지 절약의 일환으로 펌프의 수명연장 문제가 거론되어 지고 있는 점, 물에 타기 어려운 난연성유압 작동유를 사용할 경우 마찰증대 및 마모성능이 저하하는 점 등의 이유에서 유압베인 펌프의 마찰, 윤활문제가 중요시 되어지고 있다. 특히 펌프의 체적효율을 높이는 것과 마찰, 마모를 저하시키는 것과는 서로 상반된 관계에 놓여있기 때문에 문제의 해결에 어려움을 갖고 있다. 이와같은 모순을 해결하기 위해서는 베인과 캠링사이의 슬라이딩부분의 윤활상태를 파악하지 않으면 안된다. 그러나 베인의 선단부에는 10-20ms의 짧은 시간동안에 수백기압의 압력이 변화하기 때문에 지금까지 확실한 작용력의 파악이 어려워 이 분야의 윤활상태 파악에 관한 연구는 거의 이루어지지 않고 있다. 베인과 캠링간의 윤활상태를 윤활공학적 관점에서 보면 변동하중 상태에서의 슬라이딩 탄성유체윤활상태 또는 혼합윤활상태에 있는 것으로 판단되어지는데, 이와같은 여러가지 어려운 조건 때문에 윤활상태를 파악하는데, 어려운점이 뒤따르게 된다. 위와 같은 배경에 착안하여 본 연구에서는 유압베인펌프를 모델화하여 변동하중상태에서 실험이 가능한 장치를 제작, 사용하여 베인 선단 슬라이딩부분의 윤활상태를 파악하였다.

  • PDF

Optimum Design of Journal Bearings considering the Wear Rate (마멸율에 관한 저널베어링의 최적설계)

  • 임오강;이왕진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.155-164
    • /
    • 2002
  • The journal bearings use in machine parts which move relative to each other and those reduce friction and wear of journals. The journal bearings are designed to operate in the hydyodynamic lubrication regime, but elastohydrodynamic lubrication nay occur if the pressures are too high or the running speeds are too low at machine elements. It is the phenomenon that the lubricant film is broken and some parts of surfaces are in rolling contact, so that wear will increase in mixed lubrication regime. The purpose of this study is to minimize the wear rate of journal bearings for extending machine life. The wear mate in mixed lubricated regime is selected as objective function because most of wear of the journal bearings develops in elastohydrodynamic lubrication. The journal bearings we represented by a bearing radius, shaft radius, and bearing width, but the bearing radius only is selected as design variables due to a bearing radius has an influence on friction loss, stability limit velocity, and film parameter, which are used as constraints. For numerical calculation, PLBA, that is a class of the RQP algorithm, is used.

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - I. Theory and Analysis Procedure (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 − I. 이론 및 해석 절차)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.109-124
    • /
    • 2015
  • This paper presents a wear analysis procedure for the journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. A journal bearing is in the mixed elastohydrodynamic (EHL) lubrication region when the shaft speed is less than the corresponding lift-off speed. Below the lift-off speed, a wear scar can form on bearing surfaces. In part 1 of this paper, we develop the appropriate formulations and the calculation procedure for the analysis. Specifically, we formulate an equation for modified film thickness in a journal bearing considering the additional wear volume. In order to obtain the modified specific wear rate induced by the modified Archard’s wear coefficient, we utilized the extended non-dimensional diagram for the specific wear rate, k, the fractional film defect coefficient, Ψ and the asperity load sharing factor, γ2. This asperity load sharing factor is newly calculated by setting the Zhao-Maietta-Chang (ZMC) asperity contact pressure equation coupled with the central film thickness equation derived by using the ZMC asperity contact model equal to the modified central contact pressure derived by using the central (or maximum) contact pressure at the dry rough line-contact configuration. We can use the procedure introduced in this paper to determine the lifetime (or longterm) linear wear in radial journal bearings that is a result of repeated stop-start cycles.

Wear Analysis of Engine Bearings at Constant Shaft Angular Speed during Firing State - Part II: Calculation of the Wear on Journal Bearings (파이어링 상태의 일정 축 각속도에서 엔진베어링의 마모 해석 - Part II: 저어널베어링 마모 계산)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.146-159
    • /
    • 2018
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings of a four-strokes and four-cylinder engine operating at a constant angular crank shaft speed during firing conditions. To decide whether the lubrication state of a journal bearing is in the possible region of wear scar, we utilize the concept of the centerline average surface roughness to define the most oil film thickness scarring wear (MOFTSW) on two rough surfaces. The wear volume is calculated from the wear depth and wear angle, determined by the magnitude of each film thickness on a set of oil films with thicknesses lower than the MOFTSW at every crank angle. To calculate the wear volume at one contact, the wear range ratio during one cycle is used. The total wear volume is then determined by accumulating the wear volume at every contact. The fractional film defect coefficient, asperity load sharing factor, and modified specific wear rate for the application of the mixed-elasto-hydrodynamic lubrication regime are used. The results of this study show that wear occurs only at the connecting-rod big-end bearing. Thus, simulation results of only the big-end bearing are illustrated and analyzed. It is shown that the wear volume of each wear scar group occurs consecutively as the crank angle changes, resulting in the total accumulated wear volume.