• Title/Summary/Keyword: 혼합 모우드 하중

Search Result 5, Processing Time 0.018 seconds

Mixed-mode fatigue crack growth behaviors in 5083-H115 aluminum alloy (5083-H115 알루미늄 합금의 혼합 모우드 피로 균열성장 특성)

  • 옹장우;진근찬;이성근;김종배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.461-471
    • /
    • 1989
  • For the mixed-mode crack problems the direction of crack growth, the crack path and the rational representation of fatigue crack growth rates should be studied to predict fatigue life and safety of structures. In this study, a round specimen which produce nearly identical effects in all loading directions is proposed to make an easy measurement of initial direction of crack growth. The mode I and mode II stress intensity factors of the specimen were calculated using finite element method, in which the square root singular stresses at the crack tip are modeled by means of four rectangular quarter-point eight-noded elements surrounding the crack tip. Experimental results for high strength aluminum alloy showed that the direction of mixed-mode crack growth agree well with maximum principal stress criterion as well as minimum strain energy density criterion, but not with maximum shear stress criterion. From data of fatigue crack growth rates using crack geometry projected on the line perpendicular to the loading direction it is easily established that mixed-mode fatigue crack growth in 5083-H115 aluminum alloy goes predominantly with mode I crack growth behaviors.

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Beam-Type Bend Specimen for Interlaminar Fracture Toughness of Laminated Composite under Mixed-Mode Defmrmations (보 형태의 굽힘시편을 이용한 적층복합재료의 혼합모우드 층간파괴인성 평가)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.911-920
    • /
    • 1989
  • It this study, beam-type bend specimen is used to evaluate the interlaminar fracture toughness of laminated composite under mixed-mode deformations. The specimen is loaded under three-point bending and hence produced mixed-mode deformations in the vicinity of the crack tip according to the variation of the thickness ratio on delamination plane. Total energy release rate is obtained by elementary beam theory considering the effect of shear deformation. The partitioning of total value into mode-I and mode-II components is also performed. The mixed-mode interlaminar fracture toughness is evaluated by experiments on specimens with several thickness ratios of delamination plane. As the part of delamination plane is thicker, the effect of shear deformation on total energy release rate is increased. Beam-type bend specimen men may be applied to obtain informations on the mixed-mode interlaminar fracture behavior of laminated composites.

Strength of Unidirectional and Fabric Hybrid Laminate Joints (일방향-평직 복합재 혼합 적층판의 체결부 강도 연구)

  • An,Hyeon-Su;Sin,So-Yeong;Gwon,Jin-Hui;Choe,Jin-Ho;Lee,Sang-Gwan;Yang,Seung-Un
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • The failure load and mode of the unidirectional and fabric hybrid composite laminate joints are studied by test and finite element analysis. Test is conducted for the specimens with nine various geometries under pin loading. Finite element analysis is performed considering the contact and friction effects between the pin and laminate by MSC/NASTRAN. Failure is estimated by Tsai-Wu and Yamada-Sun criteria on the characteristic curve. While the failure of the specimens with the small width and edge length are much affected by the joint geometry, the geometry effects are negligible in the specimens with large width and edge length. Finite element analysis based on the characteristic length method reasonably predicts the failure load and mode of the joints.

Strain Energy Release Rate of Carbon/Epoxy Composite Material under Mixed Mode Delamination (혼합모우드 층간분리하에 있는 탄소/에폭시 복합재료의 변형에너지 방출율)

  • Yum, Y.J.;You, H.
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.66-74
    • /
    • 1999
  • A modified mixed mode bending test was performed to investigate the mixed mode delamination for carbon/epoxy composite material. Various mixed mode ratios could be produced by changing the applied load position on the loading lever and the bending load position on the specimen. The modified mixed mode bending test was analyzed to obtain strain energy release rates using beam theory, compliance method and finite element method, This results were in good agreement with the experimental result, which confirmed the validity of this test.

  • PDF