• Title/Summary/Keyword: 혼합 결합재

Search Result 184, Processing Time 0.025 seconds

Retransmission Scheme with Equal Combined Power Allocation Using Decoding Method with Improved Convergence Speed in LDPC Coded OFDM Systems (LDPC로 부호화된 OFDM 시스템에서 수렴 속도를 개선시킨 복호 방법을 적용한 균등 결합 전력 할당 재전송 기법)

  • Jang, Min-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.750-758
    • /
    • 2013
  • In this paper, we introduce the low-density parity-check (LDPC) coded orthogonal frequency division multiplexing (OFDM) subframe reordering scheme for achieving equal combined power allocation in type I hybrid automatic repeat request (H-ARQ) systems and analyze the performance improvement by using the channel capacity. Also, it is confirmed that the layered decoding for subframe reordering scheme in H-ARQ systems gives faster convergence speed. It is verified from numerical analysis that a subframe reordering pattern having larger channel capacity shows better bit error rate (BER) performance. Therefore the subframe reordering pattern achieving equal combined power allocation for each subframe maximizes the channel capacity and outperforms other subframe reordering patterns. Also, it is shown that the subframe reordering scheme for achieving equal combined power allocation gives better performance than the conventional Chase combining scheme without increasing the decoding complexity.

A Study on the Audio Routing Processing for Aircraft Intercom Considering Reusability (재사용성을 고려한 항공기 인터콤 오디오 라우팅 처리방안 연구)

  • Lee, Seungmok
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • The ICS, Intercom is the equipment which mixes and distributes the audio signal from other LRUs and plays the Voice Messages. Henceforth, it is of immense contributory importance to the pilots. Especially, the audio routing, which controls On/Off mode of each audio channel, is significant in executing a pilots' mission. But the audio routing process is quite complicated as it has the interface combination of many control signals. Underthecondition, the exceptional handling becomes difficult, which decreases maintainability and productivity. In the present work, to prevent such a situation, the author suggests amethodology,whichwillhavealower impact when the software is changed and provides high maintainability and productivity for audio routing processing.

The Effect of Blaine and SO3 Contents of OPC on Shotcrete Binder with Calcium Aluminate Accelerator (OPC의 분말도 및 SO3 함량이 시멘트 광물계 급결제를 사용한 숏크리트 결합재 물성에 미치는 영향)

  • Kang, Bong-Hee;Kim, Gyu-Yong;Choi, Jae-Won;Koo, Kyung-Mo;Hwang, Bong-Choon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.78-85
    • /
    • 2020
  • Shotcrete concrete is generally used in the form of ready-mixed concrete products using type I ordinary portland cement(hereinafter referred to as OPC) and about 5% of accelerator mixed separately in the field. In this study, we tested the effect of OPC fineness and SO3 content on a penetration resistance, compressive strength of binder for shotcrete using calcium aluminate type accerlerator. And we analysed hydrates and pore structure effects on mortar performance. In the future, it is expected to be useful for manufacturing optimized OPC as a binder for shotcrete.

The Experimental Study on the Heat Hydration Properties of Concrete According to Binder Conditions (결합재 조건에 따른 콘크리트의 수화발열 특성에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.769-776
    • /
    • 2006
  • Recently, owing to the development of industry and the improvement of building techniques, concrete structures are becoming larger and higher. In hardening of these large connote structures, the heat of hydration gives rise to considerable thermal stress depending on the size and environmental condition of concrete, which might cause thermal cracking. Especially, the crack may cause severe damage to the safety and the durability of concrete structure. This study investigates the thermal properties of concrete according to several binder conditions, such as OPC, Belite rich cement(BRC), slag cement(SC), blast furnace slag(B) added cement fly ash(F) added cement and blast-furnace-slag and fly ash added cement. As a result of this study, the properly of concrete is most better BRC than others, and fly ash(25%) added cement and BFS(35%)-fly ash(15%) added cement gets superior effect in the control of heat hydration. But synthetically considered properties of concrete, workablity, strength heat hydration, etc, it is more effective to use mineral admixture. Especially, to be used Blast Furnace slag is more effective.

The Strength Characteristics of Activated Multi-Component Cement with Kaolinite (카올린을 혼합한 활성화된 다성분계 시멘트의 강도 특성)

  • Kim, Tae-Wan;Kim, Im-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.593-600
    • /
    • 2016
  • The paper presented investigates the effects of kaolinite on strength properties of alkali-activated multi-component cement. The binders of this study was blended of ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF) and kaolinite (KA). In this study, the specimens of combination of 20%~70% GGBFS, 10%~60% FA, 10% SF (constant ratio) and 10%~50% KA binder were used for strength properties tests. The water/binder ratio was 0.5. The binders (GGBFS + FA + SF + KA) was activated by sodium hydroxide (NaOH) and sodium silicate ($Na_2SiO_3$) was 10% by total binder weight (10% NaOH + 10% $Na_2SiO_3$). The research carried out is on the compressive strength, water absorption, ultrasonic pulse velocity (UPV) and X-ray diffraction (XRD). The compressive strength decreased as the contents of KA increase. One of the major reason for this is the low reactivity of KA compared with other raw materials used as precursors such as GGBFS or FA. The presence of remaining KA indicates that the initially used quantity has not fully reacted during hydration. Moreover, the results have indicated that increased of KA contents decreased UPV under all experimental conditions. The drying shrinkage and water absorption increased as the content of KA increase. Test result clearly showed that the strength development of multi-component blended cement were significantly dependent on the content of KA and GGBFS.

Desulfurization Efficiency of Lime Absorbent in In-Furnace Desulfurization as Fly Ash Binder in Power Plant (발전소 비산재를 결합재로 활용한 로내탈황용 석회 흡수제의 탈황효율)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Cho, Jin-Sang;Ahn, Ji-Whan;Yoon, Do-Young;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.58-65
    • /
    • 2018
  • For the recycling of coal ash from the domestic circulating fluidized bed boilers, a lime-based sorbent with 0.2~0.4 mm size was prepared by using limestone powder and CFBC fly ash. Mixing a small amount of slaked lime in the lime-based absorbent lead the formation of calcium silicate on the surface of the particle and the strength of absorbent particle was improved. As a result of comparing the desulfurization characteristics, it was found that the conversion rate was about 10% higher than that of commercially available limestone desulfurization used in the furnace, which is confirmed that it can be used as a desulfurization absorbent.

The Influence of Al2O3 on the Properties of Alkali-Activated Slag Cement (알칼리 활성화 슬래그 시멘트의 특성에 미치는 Al2O3의 영향)

  • Kim, Tae-Wan;Kang, Choong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.205-212
    • /
    • 2016
  • This research investigates the influence of ground granulated blast furnace slag (GGBFS) composition on the alkali-activated slag cement (AASC). Aluminum oxide ($Al_2O_3$) was added to GGBFS binder between 2% and 16% by weight. The alkaline activators KOH (potassium hydroxide) was used and the water to binder ratio of 0.50. The strength development results indicate that increasing the amount of $Al_2O_3$ enhanced hydration. The 2M KOH + 16% $Al_2O_3$ and 4M KOH + 16% $Al_2O_3$ specimens had the highest strength, with an average of 30.8 MPa and 45.2 MPa, after curing for 28days. The strength at 28days of 2M KOH + 16% $Al_2O_3$ was 46% higher than that of 2M KOH (without $Al_2O_3$). Also, the strength at 28days of 4M KOH + 16% $Al_2O_3$ was 44% higher than that of 4M KOH (without $Al_2O_3$). Increase the $Al_2O_3$ contents of the binder results in the strength development at all curing ages. The incorporation of AASC tended to increases the ultrasonic pulse velocity (UPV) due to the similar effects of strength, but increasing the amount of $Al_2O_3$ adversely decreases the water absorption and porosity. Higher addition of $Al_2O_3$ in the specimens increases the Al/Ca and Al/Si in the hydrated products. SEM and EDX analyses show that the formation of much denser microstructures with $Al_2O_3$ addition.

The Characteristics of Manufacture Filter Media for Water Treatment Using Mixture Response with Ash and Food Waste (연소재 및 식품폐기물의 혼합 반응에 따른 수처리 여과재 제조 특성)

  • Park, Seung-Do;Lee, Won-Ho;Lee, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.5
    • /
    • pp.5-12
    • /
    • 2018
  • The porosity formation by the addition of additives was found to be the highest in the case of aluminum powder 3% and $Ca(OH)_2$ 2% under the condition that strength was maintained. The optimum mixing ratio of the binder was shown to be the most effective at (Ash+Food waste+clay):(water glass+colloidal silica) 7:3, and the temperature response is most economical and effective at $1,000^{\circ}C$. The optimal mixing ratio is the strength in 30% of ash, 30% of clay and 10% of food waste, which is the effective in non-point pollution water treatment. Filter media produced under optimal mixing conditions were analyzed as $SiO_2$ 65.8%, density $1.4g/cm^3$, porosity 25.6%, pH 9.8, and no hazardous substances were detected. As a result of the filtration of the water treatment, the mean concentration of the filtered SS was $14.06mg/{\ell}$, and the removal efficiency of SS was 90%, the recovery rate of the reversal is 97.1%. This enables the development of filter media considering economic efficiency and efficiency as well as the utilization of waste resources, enabling high value added of waste resources.

Engineering Properties of the Non-Cement Mortar using the Fly ash from Combined Heat Power Plant and Recycled Fine Aggregate (열병합발전소 플라이애시와 순환잔골재를 사용한 무시멘트 모르타르의 공학적 특성)

  • Nam, Han-Kook;Lim, Jeong-Geun;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • In this study, to suggest the application method of recycled fine aggregate, the non-cement mortar was prepared and studied with the binders of blast furnace slag, fly ash, and fly ash from combined heat power plant. As a basic experiment, a series of tests was conducted to determine the potions of the binders and types of activator. When the binder was consisted with 20% of fly ash and 40% of fly ash from combined heat power plant, the highest strength of the mortar was obtained, and as an activator, the combination of sodium hydroxide 2.5%, and calcium hydroxide 7.5% showed the highest strength of the mortar. Therefore, this study focuses on engineering properties of mortar contains fly ash from combined heat power plant and recycled fine aggregate according to replacement ratio of recycled fine aggregate based on the optimum mix from the basic experiment. As a result, the best replacement ratio of recycled fine aggregate is 75%.

Effects of Cavity Configuration on Bond Strength and Microleakage of Composite Restoration (와동의 형태에 따른 복합레진의 결합강도 및 변연누출에 관한 연구)

  • Choi, Seung-Mo;Choi, Gi-Woon;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.479-487
    • /
    • 2002
  • 복합레진의 중합시 발생하는 수축과 응력은 와동의 형태에 의하여 영향을 받으며 이는 수복재는 물론 접착계면의 물성을 결정하는 요인이 된다. 본 연구는 다양한 C-factor를 갖는 와동에 상아질 접착제 Clearfil SE Bond(Kuraray)를 도포하고 혼합형 복합레진인 Clearfil AP-X(Kuraray)와 미세혼합형의 Esthet-X(Dentsply)를 충전하여 미세인장강도 및 변연누출을 측정 평가함으로써 중합수축이 수복물과 치아계면에 미치는 영향을 평가하고자 시행하였다. 98개의 Bovine 하악전치를 이용하여 표면의 상아질을 #600 SiC paper로 연마한 대조군 및 와동의 넓이를 조절하여 C-factor 2.3, 3.0, 3.7이 되도록 제작한 실험군 와동에 복합레진을 충전한 후 37의 증류수에 24시간 보관하였다. 저속 diamond saw(Buehler)를 이용하여 1mm 두께로 수직절단 후 고속 diamond point(#104 Shofu)를 이용하여 단면적 1mm$^2$가 되도록 hour-glass모양으로 형성하여 시편을 제작하였고, Universal testing machine(EZ-Test; Shimadzu, Japan)에 시편을 부착하고 cross head speed 1mm/min으로 인장력을 가하여 미세인장 결합강도를 측정하였다. 각 C-factor에 따른 변연누출실험을 위하여 복합레진이 수복된 치아를 37$^{\circ}C$의 증류수에 24시간 보관한 후 와동을 제외한 부위에 nail varnish를 도포하고 3mol/L silver nitrate용액에 24시간 암보관한 다음 수세하여 현상액에 24시간 경과시킨 후 치아의 장축에 따라 절단하여 침투된 색소의 정도를 광학현미경상에서 40배로 관찰하였다. 각각의 실험결과는 ANOVA/Tukey's test 및 Kruskal-Wallis non-parametric independent analysis와 Mann-Whitney U test에 의하여 통계 분석하여 다음과 같은 결론을 얻었다. 1. 대조군에 있어서 혼합형 복합레진의 미세인장 결합강도는 미세혼합형에 비하여 높았으며, 실험군 사이에는 유의차를 보이지 않았다. 2.모든 복합레진의 미세인장 결합강도는 와동의 C-factor증가에 따라 감소하는 경향을 나타내었고, 혼합형 복합레진의 실험군은 대조군에 비하여 낮게 나타났으며, 미세혼합형 복합레진에서는 유의차를 보이지 않았다. 3. 절단측 및 치은측 변연부의 미세누출정도는 혼합형 복합레진이 미세혼합형에 비하여 대체로 높게 나타났다. 4. 모든 실험군에서 미세누출은 C-factor증가에 따라 증가하였고 절단측에 비하여 치은측 변연이 높게 나타났으나 통계학적 유의차는 보이지 않았다. C-factor의 변화에 대하여 필러함량과 탄성계수가 높은 혼합형 복합레진이 미세혼합형에 비하여 더 민감한 결과를 보인다. 이는 복합레진 수복시 재료의 선택과 중합수축의 적절한 조절이 중요한 요소임을 시사한다.