• Title/Summary/Keyword: 혼합 가우시안

Search Result 192, Processing Time 0.046 seconds

A Study on Optimization of Decision Tree based State Tying Model (결정트리 기반 상태공유 모텔 최적화에 관한 연구)

  • 한명희;이호준;김순협
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.17-20
    • /
    • 2003
  • 본 논문에서는 공유 모델링의 대표적인 방법인 결정트리 기반 상태공유 모델을 기반으로 하여 그 출력 확률 분포의 혼합 가우시안 수를 줄임으로써 모델을 최적화하고자 하였다. 결정트리 기반의 상태공유 모델링은 일반적인 방법을 따랐으며 혼합 가우시안 수를 늘려 인식률이 최대가 되는 지점에서 혼합 가우시안을 클러스터링하여 그 수를 줄였다. 클러스터링 시에 필요한 거리 측정 방법이나 가까운 두 가우시안의 합성 방법을 여러 기법을 실험하였다. 이때 인식률은 클러스터링 이전인 97.2%를 유지하였으며 총 혼합 가우시안의 감소율은 1.0%를 보임으로써 모델을 최적화할 수 있었다.

  • PDF

Gaussian Mixture Model for Data Clustering using Fuzzy Entropy Measures (데이터 클러스터링을 위한 가우시안 혼합 모델을 이용할 퍼지 정보량 측정)

  • 임채주;최병인;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.335-338
    • /
    • 2004
  • 본 논문에서는 기존의 정보량(Entropy) 기반 클러스터링 기법을 향상시키기 위한 방법으로서 퍼지 정보량을 이용하였다 가우시안 혼합 모델을 이용하면, 프로토타입의 목적 함수를 이용하는 클러스터링 기법보다 향상된 결과를 얻을 수 있고, Parameter의 조정이 요구되지 않는다. 그러나, 가우시안 혼합 모델의 사용은 주어진 패턴 집합을 클러스터링하는데 계산량의 증가를 초래하게 된다. 본 논문에서는 가우시안 혼합 모델의 정형화에 요구되는 계산량을 감소시키는 방법을 제시한다 또한 퍼지정보량(Fuzzy Entropy)을 적용하여 기존의 정보량 기반의 클러스터링 결과와 비교 분석하였다.

  • PDF

Gaussian Distribution-Based Face Tracking (가우시안 분포를 기반으로 한 얼굴 추적)

  • Park Soon-Young;Song Young-Sub;Kim Hang-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.295-297
    • /
    • 2006
  • 본 논문에서는 연속 영상에서 가우시안 분포를 사용하여 사람의 얼굴을 추적하는 방법을 제안한다. 영상은 여러 개의 동질한 영역들로 이루어지고, 이 영역들 중 얼굴 영역이 있다고 가정하였다. 영상에 있는 모든 영역들을 가우시안 분포로 표현하였으며, 이들의 집합을 가우시안 분포의 혼합 모델로 표현하였다. 제안된 방범에서는 이전 프레임에서 가우시안 분포들을 찾고, 찾아진 이전 프레임의 가우시안 분포들을 이용하여 현재 프레임의 영역들을 찾는다. 이 영역들 중, 초기에 주어진 얼굴 영역이 있으며 현재 프레임의 영역들에 의해 가우시안 분포는 갱신되고 이 과정을 반복함으로써 얼굴을 추적한다. 가우시안 분포의 개수를 다양하게 변화시켜 실험을 하였고, 이를 통해 가우시안 분포의 혼합 모델로 얼굴을 추적할 수 있음을 보였다.

  • PDF

Layered Object Detection using Gaussian Mixture Learning for Complex Environment (혼잡한 환경에서 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyeong;Kim, Heon-Gi;Jo, Seong-Won;Kim, Jae-Min
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.435-438
    • /
    • 2007
  • 움직이는 객체를 검출하기 위해서 정확한 배경을 사용하기 위해 널리 사용되는 방법으로는 가우시안 혼합 모델이다. 가우시안 혼합 모텔은 확률적 학습 방법을 사용하는데, 이 방법은 움직이는 배경일 경우와 이동하던 물체가 정지하는 경우 배경을 정확히 모델링하지 못한다. 본 논문에서는 확률적 모델링을 통해 혼잡한 배경을 모델링하고 객체의 계층적 처리를 통해 보다 정확한 배경으로 갱신할 수 있는 학습 방법을 제안한다.

  • PDF

Regionalization using cluster probability model and copula based drought frequency analysis (클러스터 확률 모형에 의한 지역화와 코풀라에 의한 가뭄빈도분석)

  • Azam, Muhammad;Choi, Hyun Su;Kim, Hyeong San;Hwang, Ju Ha;Maeng, Seungjin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.46-46
    • /
    • 2017
  • 지역가뭄빈도분석의 분위산정에 대한 신뢰성은 수문학적으로 균일한 지역으로 구분하기 위해 사용된 장기간의 과거 자료와 분석절차에 의해 결정된다. 그러나 극심한 가뭄은 매우 드물게 발생하며 신뢰 할 수 있는 지역빈도분석을 위한 지속기간이 충분치 않는 경우가 많이 발생한다. 이 외에도 우리나라의 복잡한 지형적 및 기후적 특징은 동질한 지역으로 구분하기 위한 통계적인 처리방법이 필요하였다. 본 연구에서 적용한 지역빈도분석은 여러 지역의 다양한 변수인 수문기상 특성을 분석하여 동질한 지역을 확인하고, 주요 가뭄변수(지속 시간 및 심각도)를 통합 적용하여 각각의 동질한 지역 분위를 추정함으로써 동질한 지역을 구분하는 해결책을 제시하였다. 본 연구에서는 가우시안 혼합 모형(Gaussian Mixture Model)을 기반으로 기반 군집분석 방법을 적용하여 최적의 동질한 지역을 구분하고 그 결과를 우도비검정 및 다른 유효성 검사 지수를 이용해서 확인하였다. 가우시안 혼합 모델에서 산정했던 매개변수를 방향저감 공간으로 표현하기 위해서 가우시안 혼합 모델방향 저감(GMMDR)방법을 적용하였다. 이 변수는 가뭄빈도분석을 위해 다양한 분포와 코풀라(copula) 적합도를 이용하여 추정 비교하였다. 그 결과 우리나라를 4개의 동질한 지역으로 나누게 되었다. 가우시안과 Frank copula를 이용한 Pearson type III(PE3) 분포는 우리나라의 가뭄 기간과 심각도의 공동 분포를 추정하는데 적합한 것으로 나타났다.

  • PDF

Network Intrusion Detection System Using Gaussian Mixture Models (가우시안 혼합 모델을 이용한 네트워크 침입 탐지 시스템)

  • Park Myung-Aun;Kim Dong-Kook;Noh Bong-Nam
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.130-132
    • /
    • 2005
  • 초고속 네트워크의 폭발적인 확산과 함께 네트워크 침입 사례 또한 증가하고 있다. 이를 검출하기 위한 방안으로 침입 탐지 시스템에 대한 관심과 연구 또한 증가하고 있다. 네트워크 침입을 탐지위한 방법으로 기존의 알려진 공격을 찾는 오용 탐지와 비정상적인 행위를 탐지하는 방법이 존재한다. 본 논문에서는 이를 혼합한 하이브리드 형태의 새로운 침입 탐지 시스템을 제안한다. 기존의 혼합된 방식과는 다르게 네트워크 데이터의 모델링과 탐지를 위해 가우시안 혼합 모델을 사용한다. 가우시안 혼합 모델에 기반한 침입 탐지 시스템의 성능을 평가하기 위해 DARPA'99 데이터에 적용하여 실험하였다. 실험 결과 정상과 공격은 확연히 구분되는 결과를 나타내었으며, 공격 간의 분류도 상당 수 가능하였다.

  • PDF

A Study on the Optimization of State Tying Acoustic Models using Mixture Gaussian Clustering (혼합 가우시안 군집화를 이용한 상태공유 음향모델 최적화)

  • Ann, Tae-Ock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.167-176
    • /
    • 2005
  • This paper describes how the state tying model based on the decision tree which is one of Acoustic models used for speech recognition optimizes the model by reducing the number of mixture Gaussians of the output probability distribution. The state tying modeling uses a finite set of questions which is possible to include the phonological knowledge and the likelihood based decision criteria. And the recognition rate can be improved by increasing the number of mixture Gaussians of the output probability distribution. In this paper, we'll reduce the number of mixture Gaussians at the highest point of recognition rate by clustering the Gaussians. Bhattacharyya and Euclidean method will be used for the distance measure needed when clustering. And after calculating the mean and variance between the pair of lowest distance, the new Gaussians are created. The parameters for the new Gaussians are derived from the parameters of the Gaussians from which it is born. Experiments have been performed using the STOCKNAME (1,680) databases. And the test results show that the proposed method using Bhattacharyya distance measure maintains their recognition rate at $97.2\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. And the method using Euclidean distance measure shows that it maintains the recognition rate at $96.9\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. Then the methods can optimize the state tying model.

Improvement in Korean Speech Recognition using Dynamic Multi-Group Mixture Weight (동적 다중 그룹 혼합 가중치를 이용한 한국어 음성 인식의 성능향상)

  • 황기찬;김종광;김진수;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.544-546
    • /
    • 2002
  • 본 논문은 CDHMM(Continuous Density Hidden Markov Model)의 훈련하는 방법을 동적 다중 그룹 혼합 가중치(Dynamic Mutli-Group mixture weight)을 이용하여 재구성하는 방법을 제안한다. 음성은 Hidden 상태열에 의하여 특성화되고, 각 상태는 가중된 혼합 가우시안 밑도 함수에 의해 표현된다. 음성신호를 더욱더 정확하게 계산하려면 각 상태를 위한 가우시안 함수를 더욱더 많이 사용해야 하며 이것은 많은 계산량이 요구된다. 이러한 문제는 가우시안 분포 확률의 통계적인 평균을 이용하면 계산량을 줄일 수 있다. 그러나 이러한 기존의 방법들은 다양한 화자의 발화속도와 가중치의 적용이 적합하지 못하여 인식률을 저하시키는 단점을 가지고 있다. 이 문제를 다양한 화자의 발화속도에 적합하도록 화자의 화자의 발화속도에 따라 동적으로 5개의 그룹으로 구성하고 동적 다중 그룹 혼합 가중치를 적용하여 CDHMM 파라미터를 재구성함으로써 8.5%의 인식율이 증가되었다.

  • PDF

Vehicle Detection in Tunnel using Gaussian Mixture Model and Mathematical Morphological Processing (가우시안 혼합모델과 수학적 형태학 처리를 이용한 터널 내에서의 차량 검출)

  • Kim, Hyun-Tae;Lee, Geun-Hoo;Park, Jang-Sik;Yu, Yun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.967-974
    • /
    • 2012
  • In this paper, a vehicle detection algorithm with HD CCTV camera images using GMM(Gaussian Mixture Model) algorithm and mathematical morphological processing is proposed. At the first stage, background could be estimated using GMM from CCTV input image signal and then object could be separated from difference image of the input image and background image. At the second stage, candidated object were reformed by using mathematical morphological processing. Finally, vehicle object could be detected using vehicle size informations depend on distance and vehicle type in tunnel. Through real experiments in tunnel, it is shown that the proposed system works well.

Layered Object Detection using Adaptive Gaussian Mixture Model in the Complex and Dynamic Environment (혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyung;Cho, Seong-Won;Kim, Jae-Min;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.387-391
    • /
    • 2008
  • For the detection of moving objects, background subtraction methods are widely used. In case the background has variation, we need to update the background in real-time for the reliable detection of foreground objects. Gaussian mixture model (GMM) combined with probabilistic learning is one of the most popular methods for the real-time update of the background. However, it does not work well in the complex and dynamic backgrounds with high traffic regions. In this paper, we propose a new method for modelling and updating more reliably the complex and dynamic backgrounds based on the probabilistic learning and the layered processing.