• Title/Summary/Keyword: 혼합형 하중

Search Result 55, Processing Time 0.024 seconds

Hybrid Damper of Steel Strip and Spring (강재 스트립과 스프링의 혼합형 댐퍼)

  • Kim, Dong-Baek;Lee, In-Duk;Lee, Jae-Won;Kim, Jong-Hoon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.299-300
    • /
    • 2022
  • 구조물의 내진보강방법 중에서 가장 널리 이용되는 방법인 강재 이력형 감쇠장치는 수평하중에 대한 응력-변위 곡선을 이용하여 지진 에너지를 소산시키는 방법인데, 이 경우 편심하중 등에 의해서 부재가 면 외 방향으로 거동하여 응력-변위곡선이 불규칙하여 그 결과의 신뢰성이 떨어지는 경우가 있다. 이러한 형상을 방지하기 위해서는 별도의 채널(Channel)을 시공하는 불편함을 감수해야 하며, 또한 수평력이 반복적으로 작용할 때 그 효과를 장담할 수 없는 문제점이 있다. 본 연구에서는 강재 스트립과 스프링을 결합한 댐퍼를 고안하여 스프링은 탄성변형을, 강재 스트립은 소성변형을 받게 하는 혼합형 댐퍼를 개발하고자한다. 여기서, 스프링은 복원력으로 작용하여 반복하중에 대한 저항성을 키우고 강재 스트립의 하중변위 곡선을 규칙적으로 하는 역할을 수행하게 되며 에너지 소산량을 계산할 때 편리함과 정확도를 높이고자 한다. 강재 스트립의 폭과 길이는 일정하지만 두께를 변화시켜서 5종류를 선택하였으며, 댐퍼 1개당 3개의 스트립을 정삼각형 형태로 배치하고 그 중심에 상당한 강성을 갖는 스프링을 갖는 형태로 제작하였다. 댐퍼 시험체는 5개를 제작한 후, 이 댐퍼를 구조물에 배치하였을 때의 지진에 대한 에너지 소산량과 부재력을 검토하여 댐퍼의 안전성(Safety)를 검증하고자 한다.

  • PDF

Stress intensity factor in cracked plate reinforced with a plate under mixed mode loading (혼합형 하중항에 있는 판재로 보강된 균열판의 응력세기계수)

  • Lee, Kang-Yong;Kim, Ok-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.569-578
    • /
    • 1998
  • The mode I and II stress intensity factors have been calculated theoretically for the cracked plate reinforced with a plate by symmetric spot welding under remote mixed mode loading. This is the extension of authors' previous work for the reinforced cracked plate under remote normal stress. Regardless of loading types, the reinforcement effect gets better as one joining spot is closer to the crack tip and the others are closer to the crack surface, and optimum number of the joining spots can be existed. For the present model, the remote loading parallel to crack surface produces the mode I stress intensity factor.

Study of Neural Network Training Algorithm Comparison and Prediction of Unsteady Aerodynamic Forces of 2D Airfoil (신경망 학습알고리즘의 비교와 2차원 익형의 비정상 공력하중 예측기법에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Kyung-Hyun;Jeon, Yong-Hee;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.425-432
    • /
    • 2009
  • In this study, the ability of neural network in modeling and predicting of the unsteady aerodynamic force coefficients of 2D airfoil with the data obtained from Euler CFD code has been confirmed. Neural network models are constructed based on supervised training process using Levenberg-Marquardt algorithm, combining this into genetic algorithm, hybrid genetic algorithm and the efficiency of the two cases are analyzed and compared. It is shown that hybrid-genetic algorithm is more efficient for neural network of complex system and the predicted properties of the unsteady aerodynamic force coefficients of 2D airfoil by the neural network models are confirmed to be similar to that of the numerical results and verified as suitable representing reduced models.

The Effect of Fiber Volume Fraction Non-uniformity in Thickness Direction on the Buckling Load of Cylindrical Composite Lattice Structures (두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조 좌굴하중에 미치는 영향)

  • Kong, Seung-Taek;Jeon, Min-Hyeok;Kim, In-Gul;Lee, Sang-Woo
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2021
  • In this paper, in order to examine the effect of fiber volume fraction non-uniformity in thickness direction on the buckling load of cylindrical composite lattice structures, we modified the equation of buckling load of the cylindrical composite lattice structures proposed by Vasiliev. The thickness of each layer of the rib was varied by fiber volume fraction, and material properties were applied differently by using the rule of mixture. Also, we performed linear buckling analysis by varying the structure size, thickness, and average value of the fiber volume fraction of finite element model. Finally, by comparing the calculation results of the buckling load of the equivalent model using the modified buckling load equation and the results of the finite element analysis, we found that the fiber volume fraction non-uniformity in thickness direction can reduce the buckling load of the cylindrical composite lattice structure.

A Study of Aging Characteristics of Composite Solid Propellants (혼합형 고체추진제의 노화특성 고찰)

  • 이정호;이백현;류희진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.24-24
    • /
    • 1998
  • 혼합형 고체추진제에 대한 장기물성 변화 및 노화특성을 고찰하고자 하였다. 본 연구에서는 CTPB와 HTPB를 바인더로 한 두 종류의 추진제에 대하여 기계적 특성 시험에 의한 추진제 장기물성 변화와 온도 변화에 따른 추진제의 화학적 노화특성을 확인하여 두 추진제의 장기 저장시 안정성에의 영향을 고찰하였다. 장기물성 평가를 위해 추진제의 응력완화 시험, 온도 및 속도변화에 따른 일축 인장시험, 하중.변형 내구성 시험을 실시하였고, 2$0^{\circ}C$, 4$0^{\circ}C$, 6$0^{\circ}C$에서 32주 동안 보관하면서 노화 시험을 실시하였다.

  • PDF

The Estimation of Buckling Load of Pressurized Unstiffened Cylindrical Shell Using the Hybrid Vibration Correlation Technique Based on the Experimental and Numerical Approach (실험적/수치적 방법이 혼합된 VCT를 활용한 내부 압력을 받는 원통형 쉘의 좌굴 하중 예측)

  • Lee, Mi-Yeon;Jeon, Min-Hyeok;Cho, Hyun-Jun;Kim, Yeon-Ju;Kim, In-Gul;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.701-708
    • /
    • 2022
  • Since the propellant tank structure of the projectile is mainly subjected to a compressive force, there is a high risk of damage due to buckling. Large and lightweight structures such as propellant tank have a complex manufacturing process. So it requires a non-destructive test method to predict buckling load to use the structure after testing. Many studies have been conducted on Vibration Correlation Technique(VCT), which predicts buckling load using the relationship between compressive load and natural frequency, but it requires a large compressive load to predict the buckling load accurately, and it tends to decrease prediction accuracy with increasing internal pressure in structure. In this paper, we analyzed the causes of the decrease in prediction accuracy when internal pressure increases and proposed a method increasing prediction accuracy under the low compressive load for being usable after testing, through VCT combined testing and FEA result. The prediction value by the proposed method was very consistent with the measured actual buckling load.

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.

STRESS ANALYSIS OF MAXILLARY PREMOLARS WITH COMPOSITE RESIN RESTORATION OF NOTCH-SHAPED CLASSⅤCAVITY AND ACCESS CAVITY ; THREE-DIMENSIONAL FINITE ELEMENT STUDY (쐐기형 5급 와동과 근관와동을 복합레진으로 수복한 상악 소구치에 대한 응력 분석: 3차원 유한요소법적 연구)

  • Lee, Seon-Hwa;Kim, Hyeon-Cheol;Hur, Bock;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.6
    • /
    • pp.570-579
    • /
    • 2008
  • The purpose of this study was to investigate the distribution of tensile stress of canal obturated maxillary second premolar with access cavity and notch-shaped class V cavity restored with composite resin using a 3D finite element analysis. The tested groups were classified as 8 situations by only access cavity or access cavity with notch-shaped class V cavity (S or N), loading condition (L1 or L2), and with or without glass ionomer cement base (R1 or R2). A static load of 500 N was applied at buccal and palatal cusps. Notch-shaped cavity and access cavity were filled microhybrid composite resin (Z100) with or without GIC base (Fuji II LC). The tensile stresses presented in the buccal cervical area, palatal cervical area and occlusal surface were analyzed using ANSYS. Tensile stress distributions were similar regardless of base. When the load was applied on the buccal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth with class Ⅴ cavity were slightly higher than that of the tooth without class V cavity. When the load was applied the palatal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth without class V cavity were slightly higher than that of the tooth with class V cavity.

THE EFFECT OF RESTORATIVE MATERIALS ON THE STRESS DISTRIBUTION OF CLASS V COMPOSITE RESIN RESTORATIONS - A 3D FINITE ELEMENT INVESTIGATION (수복재료가 5급 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원유한요소법적 연구)

  • Ahn, Hyoung-Ryoul;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.1
    • /
    • pp.20-29
    • /
    • 2006
  • The purpose of this study was to analyze the stress distribution aspect of unrestored and restored combined shape (wedge shape occulusally and saucer shape gingivally) class V cavity, which found frequently in clinical cases. A maxillary second permolar restored with a combined shape class V composite restorations were modeled using the three dimensional finite element method. Static occlusal load of 170 N was applied on lingual incline of buccal cusp at the angle of $45^{\circ}$ with the longitudinal axis of the tooth. And three dimensional finite element analysis was taken by ANSYS (Version 6.0, Swanson Analysis System Co., Houston, U.S.A) program which represent the stress distribution on unrestored and restored cavity wall and margin. The conclusions were as follows. 1. Compared to the unrestored cavity, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced and in restored cavity. 2. Von Mises stress at the occlusal and cervical cavity margin and wall were increased in restored cavity in comparison with the unrestored cavity. 3. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced more than in the flowable restoration. 4. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the occlusal and cervical cavity margin and wall were increased more than in the flowable restoration.

The Effect of Green Roof Load on the Structural Design of Roof Slab of LH Housing and Service Facilities (옥상녹화하중이 LH 공동주택 및 부대복리시설의 옥상층 슬래브 설계에 미치는 영향)

  • Lee, Bum-Sik;Kwon, Hyuck-Sam;Kim, Jung-Gon;Kim, Ji-Hyeon
    • Land and Housing Review
    • /
    • v.7 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • This paper contains structural analysis and design regarding how three types of green roof load affect roof slab design of LH housing and facilities. Based on the Structural analysis, an appropriate Roof slab rebar guideline and roof slab thickness have been set up for the green roof load which takes effect on structural design of roof slab. Result of structural analysis and design has been made as follows. Roof slabs can arrange the slab rebar(D10) within the 200~250mm disregarding the types of the green roof load and the pattern of green roof load; also, slab thickness can be designed within 150mm. Moreover, even if the concrete design strength of roof slab changes to 24, 27, and 30MPa, D10 rebar can still be arranged within 200~250mm, and 150mm for slab thickness. Two-way slab of commercial building was appeared to be arranged by slab rebar(D10) within 200mm and 150mm for slab thickness disregarding the soil type or the soil thickness of green roof.