• Title/Summary/Keyword: 혼합타설

Search Result 36, Processing Time 0.024 seconds

Development of Lightweight Foamed Concrete Using Polymer Foam Agent (고분자 기포제를 이용한 경량 기포 콘크리트의 개발(I))

  • 변근주;송하원;박상순
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.165-172
    • /
    • 1997
  • Lightweight foamed concrete is a concrete which is lighter than conventional concree by mixing ptetoamed foam in cement slurry. The objectives of this study are to develop optimal prefoarneti lightweight foamed concrete with high lightness. high flowability and enough strength fol special use of structural application by using the polymer foam agent. By mixing the admixtures such as silica-fume and fly-ash and the industrial by-product such as styrofoam for the purpose of practical use of industrial waste, lightweight foamed concrete shich has better lightness. flowability and strength than the conventional prefoamed lightweight foamed concrete is developed. This paper presents extensive data on characteristics of compressive strength and flowability of the concrete manufactured with the different factors in mix design and also presents optimum mix proportion.

Assessment on the Flexural Performance of Hybrid Fiber Reinforced ECC (하이브리드 섬유보강 ECC의 휨성능 평가)

  • Min, Kyung-Hwan;Kim, Young-Woo;Cho, Seong-Hun;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.5-6
    • /
    • 2009
  • In this study, with 2% of total PVA fiber volume fraction identically, flexural performances of ECC had long and short fibers were assessed. In the material tests, flexural properties of a mixture with 1.6% REC15 and 0.4% RF4000 were most superior. Quasi-static and dynamic tests with six 160${\times}$290${\times}$2300 mm specimens were carried out, and improvement of shear strength and performance of partial placing of ECC were estimated.

  • PDF

A Study on Development of Shotcrete Material using Fly Ash (Fly Ash을 이용한 Shotcrete 재료의 개발에 관한 연구)

  • 한오형;강추원
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2003
  • Currently, the shotcrete used as basic support in the tunnel excavation, has the advantages of maintaining high-level strength in condition of early shooting with thin thickness based on the excavation characteristics of rock mass. Therefore supreme equipment and materials were developed and the great strides have continued. Also, the development of measurement technology and the rocks behaviors of undergound are evaluated in detail and the designs of strength and thickness are made. The reinforcement materials development of new material is carried on. Most of the coal fly ash produced in Korea fire power plant is fly ash and bottom mash. Fly ash has been producing to be applied in many fields such as cement, aggregate, construction, civil, agriculture and fisheries. Also a lot of experiments are actively on the way. Therefore in this experiment, in order to use the fly ash mixed with concrete as a material of shotcrete, the experiment was performed in the best content to reduce the compression strength and the shooting rebound ratio of the excavated surface to use fly ash as a substitute material of concrete. As a result, when 15%.wt substitution was made to the fly ash, about 10% of compression strength and 6% of rebound ratio was reduced.

The Effect of Ground Granulated Blast-Furnace Slag on the Control of Temperature Rising in High Strength Concrete (고강도용 콘크리트의 온도상승 억제를 위한 고로슬래그 미분말의 효과)

  • 문한영;최연왕
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.195-204
    • /
    • 1998
  • Generally, in order to maintain high strength in concrete, it needs high cement content and low water-cement ratio.makes internal temperature rising after concrete placing inevitably, and happens temperature stress that makes initial cracks of concrete structure. Therefore, to control the thermal stress of high-strength concrete, we made 3 types of the fineness of ground granulated blast-furnace slag and 4 steps replacement. and then measured an amount of temperature rising and elapsed time of maximum temperature and strength of concrete. Also we considered the test results of heat evolution amount and heat evolution of cement paste made with 5 steps replacement by GGBF slag.As result of this study, in case of the 50% of replacement and the 6,000$\textrm{cm}^2$/g of fineness, we obtained satisfactory results that not only the controlled effect of temperature rising but strength at early ages.

Vegetation Effects and Properties on Green Soil Blended with Cement-Based Materials for Slope Stability (시멘트 기반 재료를 혼합한 사면 안정용 녹생토의 물성 및 식생 영향성)

  • Choi, Yoon-Suk;Kim, Joo-Hyung;Cho, Young-Keun;Kim, Ho-Kyu;Park, Ok-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.117-126
    • /
    • 2021
  • An experimental study was carried out to investigate the applicability of cement-based materials for green soil which is a soil for promoting plant growth. The results show that the shear strength of the green soil mixed with gypsum cement (No.3) was low, but the hardness (23.6mm) and pH value (7.4) was most suitable for the vegetation environment. In addition, the initial vegetation germination of green soil, which improved performance by adding a moisturizer, was slower than that of general green soil, and the conductivity value tended to be slightly higher. On the other hand, the slope adhesion of advanced green soil was high, and it was found that the plant growth rate and the regeneration capacity were superior after time passed.

Compressive Strength Characteristics of Light-weight Air Foamed Soil Using Dredged Silty Soils (준설 실트질 점토를 이용한 경량기포혼합토의 압축강도 특성)

  • Kim, Donggyu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2017
  • In this research, laboratory tests were carried out to investigate the engineering properties of Light-Weight Air Foamed Soil (LWAS) based on silty clays with the animal foaming agent and cement. LWAS has been used as an embankment material over soft ground for road and side extension of the existing road. In field, unit weight and flow value is measured right after producing in mixing plant in order to control the quality of LWAS, and laboratory tests are carried out to confirm the quality through compressive strength of LWAS as well. In this research, direct estimation of the specification requirement of strength using flow values in field is the main purpose of the study together with other characteristics. From the test results, it can be seen that flow values increase with the initial water content and unit weight increases with the depth due to material segregation. Compared to the upper specimen, lower end of 60 cm specimen shows about 2 times higher compressive strength. Relationship between flow values and normalized factor presented by Yoon & Kim (2004) was presented. With that relationship, compressive strength can be predicted from flow values in field. From the relationship, the normalized factor was calculated. Thereafter calculated compressive strengths according to the flow values were compared to measured strengths in the laboratory. The higher the initial water content of the dredged soil has, the better relationship between predicted and measured shows. Therefore it is necessary to predict the compressive strength in advance through the relationship between the flow value and the normalized factor to reflect it in the design stage.

Experimental Study on behavior of the Lightweight Air-foamed Soil Considering Freezing-thawing and Soaking Conditions (동결융해 및 수침조건을 고려한 경량기포혼합토의 거동 실험 연구)

  • Kang, Daekyu;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.37-46
    • /
    • 2016
  • In order to determine the variability of environmental characteristics of lightweight air-foamed soil using marine clay according to freezing-thawing and soaking conditions, unconfined compressive strength of the lightweight air-foamed soil samples made by changing the amount of cement under curing conditions of outdoor low temperature, underground or indoor wetting were observed. Compressive strength was not increased under freezing-thawing (temperature range of $-9.1^{\circ}C{\sim}17.2^{\circ}C$) regardless of the amount of cement but the more cement using, it was increased rapidly by underground curing conditions within 30 cm beneath ground level. Therefore, it is necessary to install insulation layer cutting off exterior cold air after construction of lightweight air-foamed soil in condition of freezing-thawing. Bulk density was increased too small under the long-time soaking condition, it tended to decrease rapidly when samples were dried up and had below 6% of water contents. But variability of compressive strength and bulk density was very small for preventing drying and keeping its wet state. The lightweight air-foamed soil that installed beneath ground water level or covered by soil can be evaluated as a long-term reliable construction material.

Numerical Analysis on Deformation of Soft Clays Reinforced with Rigid Materials (말합연약식반의 변형위석에 관한 수치해석)

  • Gang, Byeong-Seon;Park, Byeong-Gi;Jeong, Jin-Seop
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.27-40
    • /
    • 1985
  • This study aims at the development of computer Program for the deformation analysis of soft clay layers, and using this computer program, study the constraint effect of deformation- heaving, lateral displacement-of the soft clay layers reinforced with sheet pile at the tip of banking or improvement of soft clay layer up to hard strata, under intact state (natural) and the state of vertical drain respectively. For this study, Biot's consolidation theories and modified Cam-clay theory for constitutive equation for FEMI were selected and coupled governing equation, and christian-Boehmer's technique was applied to solve the coupled relationship. The following results are obtained. 1. Sheet pile or improvement of soft clay layer to the hard strata work well against the settlement of neighboring ground. B. In view of restriction of heaving or lateral displacement, sheet pile is not supposed to be of use. 3. Sheet pile is of effect only when vertical drain is constructed for acceleration of consolidation and load increases gradually. B. The larger the rigidity of improvement of layer to hard strata is, the less settlement occurs.

  • PDF

Study on Anti-Washout Properties and Shear-Thickening Behaviors of Surfactant Added Cement Grouts (계면활성제 혼화제를 첨가한 시멘트 그라우트의 수중 불분리 특성 발현과 점도 증가 효과 연구)

  • Jang, In-Kyu;Seo, Seung-Ree;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.480-484
    • /
    • 2012
  • Concrete, the mixture of cement, sand, gravel and water, is a suspension substance extensively used to construct building materials. When a concrete mortar is applied to the underwater construction, the rheology of concrete is of great importance to its flow performance, placement, anti-washout and consolidation. In this research, the anti-washout and rheological properties of concrete have been investigated with concrete admixtures prepared by adding anionic surfactants, cationic surfactants, and polymeric thickeners. The concrete mortar formulated by pseudo-polymeric systems with the electrostatic association of anionic and cationic surfactants, showed high viscosities and suitable anti-washout properties, but poor pumpabilities. The addition of poly methyl vinyl ether to the mixed surfactant system exhibits synergistic effects by improving the concrete mortar properties of the concrete mortar such as fluidity, visco-elastic property, self-leveling, and anti-washout.

Effects of DCM Column Properties in Softground on Stabilities of Underground Roadways (연약지반내 DCM 개량체의 특성이 지하차도의 안정성에 미치는 영향)

  • Ahn, Tae-Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.77-84
    • /
    • 2010
  • In planning underground roadway foundation on soft ground, deep cement mixing method (DCM) is employed. The proper mixing ratio using batch test and replacement rates that meet strength criteria are used for deep cement mixing column. Stiffness ratio and distance between deep cement mixing columns (C.T.C) are varied to find out influences on stress, displacement, and differential settlement. The replacement ratios that meet settlement criteria are 10~35%. As stiffness varies, stress reaches at 769.kPa that exceed criteria due to stress concentration when stiffness ratio difference is over 30. Also, when C.T.C is 5 m, stress spreads to soils, so C.T.C need to be considered carefully. The vertical displacement is 0.6~1.56 cm, and angular distortion is 1/909~1/510.