• Title/Summary/Keyword: 혼합유전알고리즘

Search Result 60, Processing Time 0.039 seconds

Non-Synonymously Redundant Encodings and Normalization in Genetic Algorithms (비유사 중복 인코딩을 사용하는 유전 알고리즘을 위한 정규화 연산)

  • Choi, Sung-Soon;Moon, Byung-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.503-518
    • /
    • 2007
  • Normalization transforms one parent genotype to be consistent with the other before crossover. In this paper, we explain how normalization alleviates the difficulties caused by non-synonymously redundant encodings in genetic algorithms. We define the encodings with maximally non-synonymous property and prove that the encodings induce uncorrelated search spaces. Extensive experiments for a number of problems show that normalization transforms the uncorrelated search spaces to correlated ones and leads to significant improvement in performance.

Hybrid Genetic Operators of Hamming Distance and Fitness for Reducing Premature Convergence (조기수렴 저감을 위한 해밍거리와 적합도의 혼합 유전 연산자)

  • Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.170-177
    • /
    • 2014
  • Genetic Algorithms are robust search and optimization techniques but have some problems such as premature convergence and convergence to local extremum. As population diversity converges to low value, the search ability decreases and converges to local extremum but population diversity converges to high value, then the search ability increases and converges to global optimum or genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we propose the genetic operators with the hybrid function of the average Hamming distance and the fitness value to maintain the diversity of the GA's population for escaping from the premature convergence. Results of simulation studies verified the effects of the mutation operator for maintaining diversity and the other operators for improving convergence properties as well as the feasibility of using proposed genetic operators on convergence properties to avoid premature convergence and convergence to local extremum.

Haplotype Inference Using Genetic Algorithm (유전자 알고리즘을 이용한 하플로타입 추론)

  • Lee, See Young;Kim, Hee-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.993-996
    • /
    • 2004
  • 사람들 사이에는 DNA 서열의 변이로 인한 유전적 차이가 있으며, 가끔 이러한 차이가 유전 질병의 원인이 되기도 한다. 일반적으로 DNA에서 가장 잘 알려진 변이가 바로 SNP(Single Nucleotide Polymorphism : 스닙)이다. SNP는 보통 블록단위로 유전되어지며 한쪽 부모로부터 유전되어진 SNP 블록을 SNP 하플로타입이라고 부른다. 생물학 실험을 통하여 추출되어진 결과물은 부모로부터 유전되어진 대립 유전자가 혼합되어진 지노타입(genotype)의 정보이다. 지노타입은 직관적으로 정확한 SNP 하플로타입을 추정하기가 힘들고, 생물학 실험을 통하여 하플로타입(haplotype)을 분석하는데 많은 비용이 들기때문에, 이를 컴퓨터 계산을 통하여 추론하는 연구가 Clark[1]에 의해서 제안되어진 이후 활발하게 진행되고 있다. 본 논문에서는 하플로타입을 효과적으로 추론하기 위해 유전자 알고리즘을 이용한 새로운 방법을 설명하고, 실험 결과를 기존의 연구 결과와 비교 분석한다.

  • PDF

A Hybrid Genetic Algorithms for Inverse Radiation Analysis (역복사 해석을 위한 혼합형 유전알고리즘에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1639-1644
    • /
    • 2003
  • A hybrid genetic algorithm is developed for estimating the wall emissivities for an absorbing, emitting, and scattering media in a two-dimensional irregular geometry with diffusely emitting and reflecting opaque boundaries by minimizing an objective function, which is expressed by the sum of square errors between estimated and measured temperatures at only four data positions. The finite-volume method was employed to solve the radiative transfer equation for a two-dimensional irregular geometry. The results show that a developed hybrid genetic algorithms reduce the effect of genetic parameters on the performance of genetic algorithm and that the wall emissivities are estimated accurately without measurement errors.

  • PDF

Hybrid Approach for Solving Manufacturing Optimization Problems (제조최적화문제 해결을 위한 혼합형 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.57-65
    • /
    • 2015
  • Manufacturing optimization problem is to find the optimal solution under satisfying various and complicated constraints with the design variables of nonlinear types. To achieve the objective, this paper proposes a hybrid approach. The proposed hybrid approach is consist of genetic algorithm(GA), cuckoo search(CS) and hill climbing method(HCM). First, the GA is used for global search. Secondly, the CS is adapted to overcome the weakness of GA search. Lastly, the HCM is applied to search precisely the convergence space after the GA and CS search. In experimental comparison, various types of manufacturing optimization problems are used for comparing the efficiency between the proposed hybrid approach and other conventional competing approaches using various measures of performance. The experimental result shows that the proposed hybrid approach outperforms the other conventional competing approaches.

Image Reconstruction of Dielectric Pipes by using Levenberg-Marquardt and Genetic Algorithm (Levenberg-Marquardt 알고리즘과 유전 알고리즘을 이용한 유전체 파이프의 영상재구성)

  • 김정석;나정웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.803-808
    • /
    • 2003
  • Several dielectric pipes buried in the lossy half space are reconstructed from the scattered fields measured along the interface between the air and the lossy ground. Iterative inversion method by using the hybrid optimization algorithm combining the genetic and the Levenberg-Marquardt algorithm enables us to find the positions, the sizes, and the medium parameters such as the permittivities and the conductivities of the buried pipes as well as those of the background lossy half space even when the dielectric pipes are close together. Illposedness of the inversion caused by the errors in the measured scattered fields are regularized by filtering the evanescent modes of the scattered fields out.

A hybrid genetic algorithm for the optimal transporter management plan in a shipyard

  • Jun-Ho Park;Yung-Keun Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.49-56
    • /
    • 2023
  • In this study, we propose a genetic algorithm (GA) to optimize the allocation and operation order of transporters. The solution in the GA is represented by a set of lists each of which the operation order of the corresponding transporter. In addition, it was implemented in the form of a hybrid genetic algorithm combining effective local search operations for performance improvement. The local search reduces the number of operating transporters by moving blocks from a transporter with a low workload into that with a high workload. To evaluate the effectiveness of the proposed algorithm, it was compared with Multi-Start and a pure genetic algorithm through a simulation environment similar in scale to an actual shipyard. For the largest problem, compared to them, the number of transporters was reduced by 40% and 34%, and the total task time was reduced by 27% and 17%, respectively.

Coarse-to-fine Classifier Ensemble Selection using Clustering and Genetic Algorithms (군집화와 유전 알고리즘을 이용한 거친-섬세한 분류기 앙상블 선택)

  • Kim, Young-Won;Oh, Il-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.857-868
    • /
    • 2007
  • The good classifier ensemble should have a high complementarity among classifiers in order to produce a high recognition rate and its size is small in order to be efficient. This paper proposes a classifier ensemble selection algorithm with coarse-to-fine stages. for the algorithm to be successful, the original classifier pool should be sufficiently diverse. This paper produces a large classifier pool by combining several different classification algorithms and lots of feature subsets. The aim of the coarse selection is to reduce the size of classifier pool with little sacrifice of recognition performance. The fine selection finds near-optimal ensemble using genetic algorithms. A hybrid genetic algorithm with improved searching capability is also proposed. The experimentation uses the worldwide handwritten numeral databases. The results showed that the proposed algorithm is superior to the conventional ones.

Optimal Design of PM Wind Generator Based on Genetic Algorithm Combined with Mesh Adaptive Direct Search (MADS를 결합한 GA 기반의 풍력발전기 최적설계)

  • Ahn, Young-Jun;Park, Ji-Seong;Lee, Chel-Gyun;Kim, Jong-Wook;Kim, Yong-Jae;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.615_616
    • /
    • 2009
  • 유한요소해석(Finite Element Analysis)을 통한 풍력발전기 최적설계시, 해석 특성상 발생하는 막대한 소요시간의 개선이 필요하다. 본 논문에서는 연간 에너지 생산량(Annual Energy Production : AEP)의 최대화를 목표로 GA(Genetic Algorithm)와 MADS(Mesh Adaptive Direct Search)를 결합한 혼합 알고리즘을 이용하여 최적설계를 수행하였다. 또한, 혼합 알고리즘과 병렬분산 유전알고리즘을 이용한 최적설계의 해석 소요시간을 비교 및 검토하였다.

  • PDF