• Title/Summary/Keyword: 혼합유전알고리즘

Search Result 60, Processing Time 0.021 seconds

혼합.이산 비선형 최적화 문제 해결을 위한 유전알고리즘

  • 윤영수;이상용
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.3 no.1
    • /
    • pp.101-116
    • /
    • 1998
  • 혼합·이산 비선형 최적화문제 해결을 위한 전역적 최적화 알고리즘이 개발되었으며 이 알고리즘은 확률적 최적화기법인 유전알고리즘을 사용한다. 유전알고리즘은 다양한 설계변수를 처리하는데 적합하다. 그러나 기존의 유전알고리즘이 특별히 잘 수행되지 않는 상황이 많이 존재하기 때문에 혼합화에 대한 다앙한 방법이 개발되어지고 있다. 따라서 이 논문은 유전알고리즘에서 최적해 주위에 대한 국고수수렴기법과 정밀 탐색법을 구체화시킨 새로운 혼합유전알고리즘(NHGA)을 개발했다. 사례연구에서는 혼합·이산 비선형 최적화문제를 해결하는데 있어서 NHGA가 상당한 능력을 제공하며 효율적이고 우수한 해를 제공할 수 있다는 것을 보여주고 있다.

Hybrid Genetic Algorithm for Classifier Ensemble Selection (분류기 앙상블 선택을 위한 혼합 유전 알고리즘)

  • Kim, Young-Won;Oh, Il-Seok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.369-376
    • /
    • 2007
  • This paper proposes a hybrid genetic algorithm(HGA) for the classifier ensemble selection. HGA is added a local search operation for increasing the fine-turning of local area. This paper apply hybrid and simple genetic algorithms(SGA) to the classifier ensemble selection problem in order to show the superiority of HGA. And this paper propose two methods(SSO: Sequential Search Operations, CSO: Combinational Search Operations) of local search operation of hybrid genetic algorithm. Experimental results show that the HGA has better searching capability than SGA. The experiments show that the CSO considering the correlation among classifiers is better than the SSO.

A Hybrid Genetic Algorithm for Solving Nonlinear Optimization Problems (비선형 최적화문제 해결을 위한 혼합유전알고리즘)

  • 윤영수;문치웅;이상용
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.11-22
    • /
    • 1997
  • 본 연구에서는 비선형 최적화 문제를 효율적으로 해결하기 위한 혼합유전알고리즘(Hybrid Genetic Algorthm : HGA)을 개발하였다. HGA는 기존 유전알고리즘의 적용에 있어 문제점으로 지적된 정밀도의 적용문제와 벌금함수의 사용을 배제하였으며 지역적최적점으로 빠르게 수렴하는 기존의 지역적 탐색법과 유전알고리즘 적용이후 수렴된 해 주변에 대한 정밀탐색법을 함께 고려하여 설계하였으며 이를 세가지의 비선형 최적화 문제 적용하여 본 논문에서 개발한 HGA의 유효성을 보였다.

  • PDF

Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons (특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교)

  • 오일석;이진선;문병로
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1113-1120
    • /
    • 2004
  • This paper proposes a novel hybrid genetic algorithm for the feature selection. Local search operations are devised and embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of the fine-tuning power, and their effectiveness and timing requirement are analyzed and compared. Experimentations performed with various standard datasets revealed that the proposed hybrid GA is superior to a simple GA and sequential search algorithms.

A Hybrid Genetic Algorithm for the Identical Parallel Machine Total Tardiness Problem (동종 병렬기계에서 납기지연 최소화를 위한 혼합형 유전 알고리즘의 개발)

  • Choe, Hong-Jin;Lee, Jong-Yeong;Park, Mun-Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.624-627
    • /
    • 2004
  • 본 연구는 동일한 병렬기계에서의 총 납기지연의 합을 최소화하는 일정계획 문제에 대해 다룬다. 이 문제는 Lenstra et al. (1977)에 의해 NP-hard로 알려져 있으며, 작업의 수와 기계의 수가 큰 현실적 문제에 대해 적절한 시간 내에 최적해를 찾는다는 것은 사실상 불가능하다. 따라서 본 연구에서는 이 문제를 해결하기 위하여 혼합형 유전 알고리즘(hybrid genetic algorithm)을 제안한다. 혼합형 유전 알고리즘에서는 임의로 발생시킨 모집단에 대해 먼저 유전 알고리즘(genetic algorithm)이 세대를 진행하며 해를 개선한다. 유전 알고리즘이 일정기간동안 더 이상 해를 개선하지 못하면, 부분탐색 알고리즘(local-search algorithm))이 유전 알고리즘의 모집단의 개체들에 대해 해의 개선을 시도한다. 즉, 부분 탐색 알고리즘은 모집단 속의 각각의 개체를 초기해로 하여 모집단 내의 개체 수만큼의 부분 최적해(local optimum)들을 구한다. 이렇게 구한 부분 최적해들로 새로운 모집단을 구성하면 다시 유전 알고리즘이 진행된다. 이 과정을 종료조건에 이를 때까지 번갈아가며 반복 수행한다. 본 연구에서 제안한 유전 알고리즘에서는 Bean(1994)이 제안한 Random key 방법으로 개체를 표현하였으며 Park(2000)이 제안한 3가지 교차 연산자들을 채용하였다. 부분탐색 알고리즘을 위해서는 쌍대교환(pair-wise interchange) 방법을 통해 이웃해를 생성하였다. 선행실험을 통하여 제안한 혼합형 유전알고리즘에서 사용하는 다양한 모수(parameter)값들을 최적화하였으며 알고리즘의 성능을 비교하기 위하여 기존의 알고리즘과도 비교실험을 수행하였다.복적인 지표가 채택되는 경우를 포함하고 있다. 셋째는 추상적이며 측정이 어려운 지표를 채택하고 있는 경우이다. 여기에는 지표에 대한 정확한 정의가 이루어져 있지 않아 피 평가자가 불필요하거나 과다한 평가 자료를 준비해야 하거나 평가자로 하여금 평가 시 혼돈을 유발할 가능성이 있거나, 또는 상위개념의 평가항목과 하위개념의 평가항목이 혼재되어 구분이 모호한 경우를 포함하고 있다. 바탕으로 '생태적 합리성'이라는 체계적인 지식교육을 거쳐서, '환경정의' 의식의 제고로 이어가고, 굵직한 '환경갈등'의 상황에서 뚜렷한 정치적 태도와 실천을 할 수 있는 '생태적 인간상'의 육성으로 나아갈 수 있어야 한다는 것이 필자의 생각이다. 이를 위해서는 어찌되었건 체험학습 영역에서는 환경현안에 대한 사회적 실천을 '교육 소재'로 삼을 수 있어야 하며, 교과학습 영역에서는 한국사회의 환경현안에 대한 정치경제적 접근을 외면하지 말고 교과서 저작의 소재로 삼을 수 있어야 하며, 이는 '환경관리주의'와 '녹색소비'에 머물러 있는 '환경 지식교육'과 실천을 한단계 진전시키는 작업으로 이어질 것이다. 이후 10년의 환경교육은 바로 '생태적 합리성'과 '환경정의'라는 두 '화두'에 터하여 세워져야 한다.배액에서 약해를 보였으나, 25% 야자지방산의 경우 50 ${\sim}$ 100배액 어디에서도 액해를 보이지 않았다. 별도로 적용한 시험에서, 토마토의 경우에도 25% 야자지방산 비누 50 ${\sim}$ 100배액 모두 약해를 발생하지 않았으나, 오이에서는 25% 야자지방산 비누 100배액에도 약해를 나타내었다. 12. 이상의 결과, 천연지방산을 이용하여 유기농업에 허용되는 각종의 살충비누를 제조할 수 있었으

  • PDF

A Hybrid Genetic Algorithm Using Epistasis Information for Sequential Ordering Problems (서열순서화문제를 위한 상위정보를 이용하는 혼합형 유전 알고리즘)

  • Seo Dong-Il;Moon Byung-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.661-667
    • /
    • 2005
  • In this paper, we propose a new hybrid genetic algorithm for sequential ordering problem (SOP). In the proposed genetic algorithm, the Voronoi quantized crossover (VQX) is used as a crossover operator and the path-preserving 3-Opt is used as a local search heuristic. VQX is a crossotver operator that uses the epistasis information of given problem instance. Since it is a crossover proposed originally for the traveling salesman problem (TSP), its application to SOP requires considerable modification. In this study, we appropriately modify VQX for SOP, and develop three algorithms, required in the modified VQX, named Feasible solution Generation Algorithm, Precedence Cycle Decomposition Algorithm, and Genic Distance Assignment Method. The results of the tests on SOP instances obtained from TSPLIB and ZIB-MP-Testdata show that the proposed genetic algorithm outperforms other genetic algorithms in stability and solution quality.

Shipyard Skid Sequence Optimization Using a Hybrid Genetic Algorithm

  • Min-Jae Choi;Yung-Keun Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.79-87
    • /
    • 2023
  • In this paper, we propose a novel genetic algorithm to reduce the overall span time by optimizing the skid insertion sequence in the shipyard subassembly process. We represented a solution by a permutation of a set of skid ids and applied genetic operators suitable for such a representation. In addition, we combined the genetic algorithm and the existing heuristic algorithm called UniDev which is properly modified to improve the search performance. In particular, the slow skid search part in UniDev was changed to a greedy algorithm. Through extensive large-scaled simulations, it was observed that the span time of our method was stably minimized compared to Multi-Start search and a genetic algorithm combined with UniDev.

Hybrid Genetic Algorithm Approach using Closed-Loop Supply Chain Model (폐쇄루프 공급망 모델을 이용한 혼합형유전알고리즘 접근법)

  • Yun, YoungSu;Anudari, Chuluunsukh;Chen, Xing
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.4
    • /
    • pp.31-41
    • /
    • 2016
  • This paper is to evaluate the performance of a proposed hybrid genetic algorithm (pro-HGA) approach using closed-loop supply chain (CLSC) model. The proposed CLSC model is a integrated supply chain network model both with forward logistics and reverse logistics. In the proposed CLSC model, the reuse, resale and waste disposal using the returned products are taken into consideration. For implementing the proposed CLSC model, two conventional approaches and the pro-HGA are used in numerical experiment and their performances are compared with each other using various measures of performance. The experimental results show that the pro-HGA approach is more efficient in locating optimal solution than the other competing approaches.

A Hybrid Heuristic for Clustered Data Mapping (클러스터 데이터 매핑을 위한 혼합형 휴리스틱)

  • 박경모
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10c
    • /
    • pp.662-664
    • /
    • 2000
  • 병렬 컴퓨팅에서 중요 문제의 하나는 다중 태스크를 다중 프로세서 병렬 시스템의 여러 노드에 대한 최적의 매핑을 찾는 것이다. 이러한 매핑의 목적은 솔루션 품질에 손상 없이 총 실행시간을 최소화시키는 것이다. 이 분야에서는 많은 휴리스틱 방법들을 사용하여 나름대로 매핑 문제를 해결해 왔다. 본 논문에서는 효율적인 클러스터 데이터 매핑을 위한 혼합형 휴리스틱 기법에 대하여 기술한다. 제시하는 휴리스틱 기법은 유전알고리즘과 평균장어닐링 알고리즘을 혼합시킨 것으로 두 가지 방법의 장점들을 합하여 성능을 향상시킬 수 있음을 보여준다. 혼합형 휴리스틱 알고리즘의 솔루션과 실행시간을 기존 매핑 알고리즘들과 비교한 시뮬레이션 결과를 보고한다.

  • PDF