• Title/Summary/Keyword: 혼합소화

Search Result 323, Processing Time 0.024 seconds

Effect of Food Waste Mixing on Hydrogen Gas Production in Anaerobic Digestion of Brown Water from Urine Diversion Toilet (소변분리변기오수(Brown water)의 혐기성 처리 시 음식물 쓰레기 혼합에 따른 수소생산 특성)

  • Seong, Chung-Yeol;Yoon, Cho-Hee;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.865-872
    • /
    • 2014
  • The study was conducted to evaluate the effect of addition of food waste in brown water for anaerobic hydrogen production. Batch experiment was carried out to determine appropriate food waste to brown water mixing ratio. Maximum hydrogen yield of $6.92mmol\;H_2/g\;COD_{removed}$ was obtained at 70% food waste and 30% brown water. Semi-pilot scale reactor was operated based on result of batch experiment. Semi-pilot reactor operated, mixing 70% food waste and 30% brown water showed significant increment in butyric acid concentration. B/P (Butyric to propionic acid ratio) which is considered as governing factor for hydrogen production was found high (52.64). Maximum hydrogen yield of $25.03mmol\;H_2/g\;COD_{removed}$ was obtained. Result of this study concluded that mixing of food waste to brown water at appropriate ratio assists in enhanced hydrogen fermentation.

A Study On The Application Of Foam Extinfuishing Agent By Using Halon 1301 And Halon Alternatives (Halon 1301과 Halon 대체 소화약제를 기포제로 이용한 포 소화약제에 대한 연구)

  • Jung, Ki-Chnag;Lim, Sung-Muk;Lee, Chang-Sub;Kang, Young-Goo;Kim, Hong
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.29-40
    • /
    • 1996
  • The AFFF(Aqueous Film Forming Foam : 3M Company's Light Water) agent are synthetic compounds that foams which are similar to those produced by protein based materials. The foam extinguishing agent was used In the extinguisher was the AFFF agent. We sought, however, to make other foams by using halon 1301 (CF$_3$Br) and halon alternatives, such as HCFC Blend A($CHCIF_2$ 82%, $CF_3$CHCIF 9.5%m $C_{10}$$H_{16}$ 3.75%), HFC-227ea ($CF_3$ $CHFCF_3$) We selected these alternatives instead of air in order to raise the expansion ratio of the AFFF agent. By these means we discovered that it is possible to increase the expansion ratio of the AFFF agent up to 44:1 and up to 24:1 when HFC-227ea was used as a halon alternatives. Therefore our new foam extinguishing agents can be used in a portable extinguish agents can be used in a portable extinguishers.

  • PDF

A Study on Characteristic of Extinguishment for Solid Propellants Composition by Rapid Depressurization (압력 강하에 따른 추진제 조성별 소화 특성 분석)

  • Choi, Jaesung;Lee, Choonghee;Lim, Jaeil;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.37-45
    • /
    • 2017
  • Extinguishment of a burning solid propellant is difficult, however, dynamic extinction can be induced by fast depressurization in combustion chamber. This paper describes experimental results for the characteristics of extinguishment for composite solid propellants by rapid depressurization. For various composition of solid propellants, depressurization ratio which can induce extinguishment of combustion was obtained using experimental apparatus with rupture disk. Experimental results showed that particle size of oxidizer, mixing ratio of oxidizers with different particle size and contents of metal fuel can affect on the characteristics extinguishement for solid propellant.

Development of Auto Mixing System of High Expansion Foam for Optimal Expansion Performance according to Changing Temperature (고발포 소화약제의 온도 변화에 따른 최적발포성능 유지를 위한 자동혼합시스템 개발)

  • Kim, Ha-Young;Kim, Sung-Soo;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.139-144
    • /
    • 2010
  • Fire fighting foam is expanded when it mix with many water in mechanical method. It have adaptability, mass production possibility, long-time storage possibility. But foam isn't recommended that it use for extinguish the fire in winter. Because of, expansion ratio is changed according to exterior temperature and environment. In this study, we analysis to effect of expansion according to temperature and develop auto mixing system available for fire engine. As a result of non-standard drug mixture is 3.0% up to 30.08% depending on the temperature of the fire showed that the difference in performance occurs. In addition, analysis of the applicability of automatic mixing system design values and actual experimental data as 0.012% maximum error of the applicability of the system obtained according nataname was judged.

Effects of Mixing Ratio and Organic Loading Rate of Acid Fermented Food Wastes and Sewage Sludge on the Anaerobic Digestion Process (음식물찌꺼기 산발효산물과 하수슬러지의 혼합비 및 유기물부하가 병합처리에 미치는 영향)

  • Ahn, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.247-256
    • /
    • 2006
  • This study has been conducted for the process of food wastes disposal using surplus capacity of established sewage treatment plant by co-digestion of fermented food wastes and sewage sludge after thermophilic acid fermentation of food wastes. The co-digestion of thermophilic acid fermented food wastes and sewage sludge was performed by semi-continous method in mesophilic anaerobic digestion reactor. It showed great digestion efficiency as the average SCOD and VS removal efficiency in organic loading rate 3.30g VS/L.d. were 74.2% and 73.6%, and the gas production rate and average methane content were 0.440 L/g $VS_{add}.d$ and 66.5%, respectively. Based on the results of this study, the co-digestion of thermophilic acid fermented food wastes and sewage sludge in sewage treatment plant is able to improve treatment efficiency of anaerobic digestion reactor and to dispose food wastes simultaneously, and was proved excellent economical efficiency comparing with any other treatment methods.

A Deduction of Optimum Conditions as Mixing Ratio of CWOS and Loess for Sewage Sludge Conditioning (하수슬러지 개량을 위한 CWOS와 황토의 혼합비율에 따른 최적조건의 도출)

  • Jung, Yoo-Jin;Ju, Yuen-Gyung;Sung, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.125-131
    • /
    • 2002
  • This study was carried out to evaluated for dewaterability of sewage sludge using waste oystershell and loess. The Jar-Test and the Buchner funnel test were proceeded for the assessment of dewaterability of a thickened sludge and digested sludge. TTF(Time to Filter), SRF(Specific Resistance to Filtration) were adopted as the valuation indices of sludge dewaterability. Dewatering conditioner which composed of both oystershell and loess is much dewaterable than the one composed of only oystershell. In the course of combining with oystershell and loess, the following fact was found that the dewaterability of the combination which have the higher ratio of oystershell than that of loess is superior. The most suitable oystershell :loess ratio of dewatering conditioner is 9:1 in treating both thickened sludge and digested sludge.

  • PDF

Effects of Processing Conditions on Nutritional Qualities of Seafood -2. Effects of Cryoprotectants on the Protein Qualities of Pollock Surimi- (해양식량자원의 가공조건별 영양적 품질평가 -2. 명태연육 단백질품질에 미치는 냉동변성방지제의 영향-)

  • RYU Hong-Soo;LEE Keun-Woo;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.335-343
    • /
    • 1994
  • To determine the optimal level of cryoprotectant on the denaturation of pollock surimi produced in Korea, the relative cryoprotective effects of crystalline sorbitol alone and in combination with sucrose were assessed. Freeze induced protein denaturation was also studied as affected by polyphosphates and maltodextrin during frozen storage at $-25^{\circ}C$ for 16 weeks. Variables evaluated included salt extractable protein, drip loss and in vitro protein quality. The best cryoprotective effect was achieved from sucrose/sorbitol 1:1(w/w) mixture at $8\%$ with $0.2\%$ sodiumpyrophosphate and sodiumtriphosphate(1:1, w/w) in surimi by measurement of salt extractable protein and drip loss. Those cryoprotectants had little effect on surimi protein quality during frozen storage as measured by trypsin inhibitor(TI), protein digestibility and computed protein efficiency ratio(C-PER). Protein digestibility of surimi was not changed significantly by polyphosphate and maltodextrin at various levels(p<0.05), with the exception of 4 or $6\%$ sorbitol and $10\%$ sucrose alone which resulted in a higher digestibility. $8\%$ sorbitol/sucrose (5:3, w/w) treatment without polyphosphates showed the highest cryoprotective effectiveness from digestibility assay.

  • PDF

Monitoring of Hydrogen Sulfide in Anaerobic Co-digestion of Swine Manure and Food Waste (돈분 및 음식물쓰레기 혼용 혐기소화 시 황화수소 가스 모니터링)

  • Shin, JoungDu;Sung, Shihwu;Kim, Hyunook;Kim, SamcCeun;Lee, MyoungSun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.43-49
    • /
    • 2008
  • Objective of this study was to monitor the hydrogen sulfide production rate and concentration in anaerobic co-digestion of swine manure and food waste for biogas production in order to alternate the petroleum based energy. Anaerobic co-digestion for biogas production was performed in serum bottles at 2% volatile solids (VS) concentration and various mixing ratios of two substrates(swine manure: food waste = 100:0 ~ 0:100). Although hydrogen sulfide production rates were varied with digestion periods at different treatments, it was observed that hydrogen sulfide produced in the swine manure alone was lower at 2.4 fold than that of food waste. For effects of hydrogen sulfide concentration in the different mixing ratios of swine manure to food waste, the higher food waste ratio the higher hydrogen sulfide concentration. Also its average concentrations were varied from 0.1452% in the swine waste only to 0.3420% in the food waste alone. For the composition ratio of bio-gas in their anaerobic co-digestion, it appeared that there was 53.2% of $CH_4$, 23.9% of $CO_2$, 0.3% of $H_2S$ and 22.7% of miscellaneous gases including moisture.

  • PDF