• Title/Summary/Keyword: 혼합계면활성제계

Search Result 3, Processing Time 0.017 seconds

Study on the Solubilization of 4-ethylaniline in the aqueous solutions of mixed surfactants (혼합계면활성제의 수용액에서 4-ethylaniline의 가용화에 관한 연구)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.438-447
    • /
    • 2020
  • The critical micelle concentration (CMC) values of the mixed surfactant systems and the solubilization conatant (Ks) values of 4-ethylaniline in those solutions were measured and analyzed by the UV-Vis method. As a result, the mixed surfactant systems of TTAB/LSB and TTAB/TX-100 did not deviate significantly from ideal mixed micellization. However, the mixed systems of SDS/LSB and SDS/TX-100 showed great negative deviations from ideal mixed model. These differences showed that the intensity of the interaction between two components in the mixed micelle was different for each mixed system and that these differences greatly influenced the solubilization of 4-ethylaniline by a mixed surfactant system. Among pure surfactants, an anionic surfactant such as SDS showed a greater Ks value than other ionic surfactants, and the Ks value by each surfactant system decreased in the order of SDS≫TTAB≧LSB>TX-100. In addition, the Ks values of all the mixed surfactant systems were higher than those of the pure surfactants constituting the mixed systems.

Effect of Cosurfactant on Microemulsion Formation and Cleaning Efficiency in Systems Containing Alkyl Ethoxylates Nonionic Surfactant, D-Limonene and Water (보조계면활성제 첨가가 Alkyl Ethoxylates계 비이온 계면활성제, D-limonene, 물로 이루어진 시스템에서의 마이크로에멀젼 형성 및 세정력에 미치는 효과)

  • Lee, Jong Gi;Bae, Sang Soo;Cho, In Sik;Park, So Jin;Park, Byeong Deog;Park, Sang Kwon;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.664-671
    • /
    • 2005
  • In this study, the effect of sosurfactant on microemulsion phase behavior was investigated in ternary systems containing alkyl ethoxylates nonionic surfactant, water and d-limonene. The addition of a cosurfactant produced a microemulsion phase over a wide range of temperature and promoted formation of a microemulsion phase at lower temperatures. In particular, small amounts of n-propanol, as a cosurfactant, were found to be the most effective in extending a microemulsion phase region over a wide range of temperature. Temperature sensitivity of a nonionic surfactant system was effectively relieved by addition of the anionic surfactant sodium dodecyl sulfate. And the formation of one phase microemulsion was not affected by pH, hardness concentration and addition of an antioxidation agent. The cleaner candidates were determined from microemulsion phase behavior study, and their cleaning efficiency was tested using a dipping method. All the cleaner candidates selected during this study showed excellent removal efficiency for abietic acid over a temperature range from 30 to $40^{\circ}C$ presumably due to a decrease in interfacial tension.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.