• Title/Summary/Keyword: 혼입공기

Search Result 165, Processing Time 0.022 seconds

Material Properties of Concrete Produced with Limestone Blended Cement (석회석 혼합 시멘트로 제조된 콘크리트의 기초 물성)

  • Bang, Jin-Wook;Kwon, Seung-Jun;Shin, Kyung-Joon;Chung, Woo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.125-132
    • /
    • 2015
  • This paper presents an experimental investigation in order to evaluate fresh and hardened properties of LP (Limestone Powder) blended cement concrete. The cement contents of the mixtures are replaced by LP in the range of 10%, 15%, 25%, and 35%, while a control mixture is prepared with only OPC (Ordinary Portland Cement). The fresh concrete properties like slump and air content are similar to those of control mixture up to 35% of replacement ratio of LP, however a delay in setting time is evaluated. The hardened properties including compressive strength, flexural strength, and rapid freezing and thawing resistance shows similar results of control mixture up to 15% of replacement. Relatively lower strength development is evaluated over 25% replacement of LP. For accelerated carbonation test, resistance to carbonation rapidly decreases with increasing LP replacement ratio due to the limited amount of $Ca(OH)_2$. From the study, LP replacement under 15% can be adopted considering reduction of strength and resistance to carbonation.

Effect of Waste Cooking Oil on Durability of High Volume Mineral Admixture Concrete (폐유지류가 혼화재 다량 치환 콘크리트의 내구성에 미치는 영향)

  • Han, Min-Cheol;Woo, Dae-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • This paper is to investigate an effect of waste cooking oil(WCO) on the engineering properties and durability of high volume admixture concrete. Fly ash with 30% and blast furnace slag with 60% were incorporated in OPC to fabricate high volume admixture concrete with 0.5 of W/B. Emulsified refining cooking oil(ERCO) was made by mixing WCO and emulsifying agent to improve fluidity. ERCO was replaced by cement from 0.25 to 1.0%. As results, the increase of ERCO resulted in decrease of slump and air contents. For compressive strength, the use of ERCO led to decrease the compressive strength at 28 days, while it had similar strength or much higher strength than plain concrete at 180 days. Resistance to carbonation and chloride penetration was improved with the increase of ERCO contents due to decreased pore distribution by saponification between ERCO and concrete, while freeze-thaw resistance was degraded due to air loss.

Effect of Carbon Amino Silica Black Contained Superplasticizer on the Engineering Properties and Chromaticity of Black Color Concrete (카본 아미노 실리카 블랙 기반 고성능 감수제가 블랙 컬러 콘크리트의 공학적 특성 및 발색도에 미치는 영향)

  • Han, Min-Cheol;Hong, Seok-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.181-188
    • /
    • 2013
  • This paper is to investigate experimentally an effect of carbon amino silica black-superplasticizer(CASB-SP)on the engineering properties and chromaticity of black color concrete with 0.45 of W/C(water to cement). CASB-SP and carbon black were applied for pigment of the concrete. To prevent efflorescence of concrete, four different water repellent agents were also applied. As results, it was found that use of CASB-SP increased the slump and air contents. Furthermore, the use of CASB-SP increased the compressive strength. As CASB-SP dosages increased, chromaticity was well developed. For the effect of water repellent agent, the use of epoxy type was effective for protection from efflorescence. Based on test results, it was evaluated that 0.5% of CASB-SP effectively improve the concrete quality as well as enhance the chromaticity with proper dosage.

Fresh and Strength Properties of Mortar Produced with Recycled Cactus Stem Powder (자원순환형 선인장 줄기 분말을 혼입한 모르타르의 굳지 않은 특성과 강도)

  • Kim, Hyo-Jung;Kwon, Ki-Seong;Lee, Ka-Youn;Lee, Geung-Joo;Kim, Yun-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.365-371
    • /
    • 2020
  • In this study, in order to recycle the stems of opuntia cactus discarded after harvesting the fruit, the cactus stems were powdered and applied as a cement-based admixture. The powder of cactus stem was mixed into the mortar, and its effect on the fresh properties and strength of the mortar was studied. The results were compared with the properties of mortars produced by mixing with a retarder sugar and a viscosity agent methyl-cellulose, which are conventional saccharide-based admixtures. Based on the test results, the cactus stem powder did not clearly show the effect as a retarding agent, whereas the flow and the air content were similar to those of the mortar mixed with methyl-cellulose. This indicated that the cactus stem powder can be used as a viscosity agent. It was found that the strength of the mortar tended to increase when the mixing ratio of the cactus stem powder was lower than 0.3%.

High Temperature Properties of Cement Mortar Using EVA, EVCL Redispersible Polymer Powder and Fly Ash (EVA, EVCL 분말수지와 플라이애시를 혼입한 시멘트 모르타르의 고온특성)

  • Song, Hun;Shin, Hyeonuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.365-372
    • /
    • 2018
  • 3D printing technology of construction field can be divided into structural materials, interior and exterior finishing materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a additive type manufacturing, and the role of a redispersible polymer powder is important. But, high temperatures, redispersible polymer cement base material beget dehydration and micro crack of cement matrix. In this research, we developed a EVA, EVCL redispersible polymer cement base material applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility. From the test result, developed EVCL redispersible polymer cement mortar showed good stability in high temperatures. These high temperature stability is caused by the ethylene-vinyl chloride binding. Thus, this result indicates that it is possible to fire resistant 3D printing interior and exterior finishing materials.

Basic Properties of Latex-Modified Concrete Using Fly-ash (플라이애쉬를 이용한 라텍스개질 콘크리즈의 기초물성 연구)

  • Hong, Chang-Woo;Jeong, won-Kyong;Kim, Kyong-jin;Yun, Kyong-ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.205-211
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of fly-ash on strength development and durability of latex-modified concrete (LMC) and ordinary portland cement concrete (OPC). Main experimental variables were latex contents (0%, 10%, 15%) and fly-ash content (0, 10%, 20%, 30%). Air content and slump tests were performed to check the basic properties of fresh concretes, and compressive strength, flexural strength, rapid chloride ion permeability and chemical resistance were measured to analyze the basic properties of hardened concretes. The test results showed that air contents of LMC with fly ash decreased as fly-ash contents increased from 0% to 30%. Compressive and flexural strength developments of LMC with fly ash were quite similar to those of LMC without fly ash. However, the long-term flexural strength development of LMC with fly ash after 90 days were bigger than that of LMC without fly ash. Chloride ion permeability and chemical resistance decreased rapidly as the content of fly ash increased. Thus, fly ash could be used at LMC in order to reduce water permeability.

A Study on the Development of Dewatering Mold Form for Performance Improvement of Concrete (콘크리트 성능개선을 위한 탈수거푸집공법의 실용화 연구)

  • Woo Kwang-Min;Lee Hak-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.88-95
    • /
    • 2003
  • Dewatering mold form get many holes on the surface to drain excessive water from combine concrete. While fiber is adhered to the forms inter surface, that makes it possible to improve concrete workability by draining excess water through the holes. We can expect the outer layer to solidify and to compact and get improvement of concretes durability. Maybe, it is valuable enough that dewatering mold form is put to practical use. On this study, the purpose is to obtain fundamental data for effective dewatering mold and properties of exposed concrete with the form, and ultimately, is to propose practical theory.

Analysis of in Pipeline Systems Using Rigid Water Colum Model (강성수리 모델에 의한 파이프라인계의 서어징 해석)

  • 김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.87-102
    • /
    • 1990
  • 개방식과수로는 낮은 압력으로 다량의 용수를 수송할 수 있는 장점을 갖고 있으나 유량변동에 의한 서어징현상이 현저한 것이 단점이다. 관로내의 흐름을 안정시키기 위해서는 이 서어징의 특성이 규명되어 대규모의 서어징에 대한 대책이 강구되어야 할 것이다. 개방식관수로계의 서어징을 강성수주이론으로 계산하기 위하여 운동방정식 연속방정식가 스탠드 수조의 중간벽에 설치된 언의 월유공식등을 조합한 기초방정식이 유도되었다. 본 연구의 수치해석 모델은 가장 일반적인 4차의 Runge-Kutter 방법을 사용하였으며, 이 모델의 정당성과 프로그램의 유통성을 검증하기 위하여 수리모형실험치와 수치해석치가 비교되었다. 그 결과 관로에 공기의 혼입이 없는 경우에는 실험치와 해석치가 실용상의 지장이 없는 정도로 잘 일치되었지만, 공기의 혼입이 발생되는 경우에는 실험치가 해석치에 비해 약간 크게 나타나서 이 경우에도 서러징의 해석이 가능한 새로운 모델의 개발이 필요한 것으로 생각된다. 또한 본 강성수주 모델을 이용하여 현재 서어징 문제로 곤란을 받고 있는 일본 자하연 비파호 부근의 용수간선을 대상으로 그 서어징의 특성과 개선방법을 경계한 결과 개설 개방식관수로계의 스탠드 중 매3개소 스탠드마다 1개소 스탠드의 하류측 수조 수면적 확장하는 것이 타당성이 있는 것으로 해석되었다.

  • PDF

Thermal performance prediction of amorphous steel fibers mixed into the floor heating system (비정질 강섬유 혼입 바닥난방시스템의 열성능 평가)

  • Cho, Hyun;Pang, Seung-Ki
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • The thermal performance of amorphous steel fibers mixed floor heating system was evaluated. Analysis of results, depending on the hot water supply temperature changes, the average temperature of the bottom of the hot water supply temperature is an amorphous steel fiber floor heating system is about 2~4% higher. The average temperature of the floor surface to 1.5m air amorphous steel fiber system is 1~2% higher. The amount of heat supplied to indoor air (1.5m) from the bottom surface of amorphous steel fiber floor heating system is about 7~8% higher

Aeration Effects on the Performance of Turbocharger Journal Bearing under Constant Load Operating Condition (일정하중 운전조건 하에서 공기혼입이 터보챠져 저어널베이링의 성능에 미치는 영향)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.207-218
    • /
    • 2007
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed overcoming the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. In this study, the influence of aerated oil on a high-speed journal bearing is also examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil inlet port's type, oil aeration level and shaft speed. It is found that the type of oil inlet ports and shaft speed play important roles in determining the temperature and pressure distribution, then the friction in a journal bearing at high speed operation. Also, the results show that, under extremely high shaft speed, the high shear effects on aerated oil and the high temperature effects are canceled out each other. So, the bearing load and friction show almost no difference between the aerated oil and pure oil.