• Title/Summary/Keyword: 혼성 반응조

Search Result 2, Processing Time 0.017 seconds

Effects of the Recirculation Port Location on Treatment Efficiency of an Anaerobic Hybrid Reactor Consisted of a Fluidized Bed and a Packed Bed (유동상과 충전상이 결합된 혐기성 혼성 반응조에서 순환수의 인출지점이 처리효율에 미치는 영향)

  • Kim, Seong-Yong;Park, Soo-Young;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1935-1944
    • /
    • 2000
  • This research was performed to investigate the effects of the location of recirculation port on the wastewater treatment efficiency of an anaerobic hybrid reactor consisted of a fluidized bed and a packed bed. The recirculation port was located either at the top of the packed bed (Reactor 2) or above the fluidized bed (Reactor 1). Media for the fluidized bed and the packed bed were granular activated carbon and Pall ring-type plastic media. respectively. At organic loading rates(OLR) up to $6.2kg\;COD/m^3-day$. Reactor 2 showed somewhat better performance than Reactor 1 with COD removal efficiencies of 85.0-95.2%. The COD removal efficiencies of the reactors drastically deteriorated at OLRs above $6.2kg\;COD/m^3-day$, and the tendency was more severe for Reactor 1 than for Reactor 2. Eventhough the two reactors showed similar effluent SS concentrations at OLRs below $3.6kg\;COD/m^3-day$, Reactor 2 showed higher effluent SS concentrations than Reactor 1 at OLRs above $5.3kg\;COD/m^3-day$. Reactor 2 was stabler than Reactor 1 with a methane production rate of $5.5kg\;COD/m^3$-day at the OLR of $13.3kg\;COD/m^3-day$. An abrupt increase in effluent volatile acid concentration was observed at the OLR of $6.2kg\;COD/m^3-day$ for Reactor 1 and $7.1kg\;COD/m^3-day$ for Reactor 2. and the increase was greater in Reactor 1. In conclusion. the range of OLR for adequate treatment in the hybrid reactor was determined according to the location of the internal recirculation port. It is more desirable for higher OLRs to locate the recirculation port at the top of the packed bed in order to utilize the whole volume of the reactor.

  • PDF

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.