• Title/Summary/Keyword: 호흡 동조 방사선치료

Search Result 43, Processing Time 0.035 seconds

The Clinical Implementation of 2D Dose Distribution QA System for the Patient Specific Respiratory-gated Radiotherapy (호흡동조 방사선치료의 2차원 선량 분포 정도관리를 위한 4D 정도관리 시스템 개발)

  • Kim, Jin-Sung;Shin, Eun-Hyuk;Shin, Jung-Suk;Ju, Sang-Gyu;Han, Young-Yih;Park, Hee-Chul;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.127-136
    • /
    • 2010
  • Emerging technologies such as four-dimensional computed tomography (4D CT) is expected to allow clinicians to accurately model interfractional motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. A need exists for a 4D radiation therapy quality assurance (QA) device that can incorporate and analyze the patient specific intrafractional motion as it relate to dose delivery and respiratory gating. We built a 4D RT prototype device and analyzed the patient-specific 4D radiation therapy QA for 2D dose distributions successfully. With more improvements, the 4D RT QA prototype device could be an integral part of a 4D RT decision process to confirm the dose delivery.

Usefulness of Gated RapidArc Radiation Therapy Patient evaluation and applied with the Amplitude mode (호흡 동조 체적 세기조절 회전 방사선치료의 유용성 평가와 진폭모드를 이용한 환자적용)

  • Kim, Sung Ki;Lim, Hhyun Sil;Kim, Wan Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose : This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95% agreement. The rotational intensity modulated radiation therapy, respiratory synchronized to the respiratory cycle created Amplitude mode and the actual patient's breathing cycle could be seen that a good agreement. Conclusion : When you are treated Non-respiratory and respiratory method between volumetric intensity modulated radiation therapy rotation of the absolute dose and dose distribution showed a very good agreement. This breathing technique tuning volumetric intensity modulated radiation therapy using a rotary moving along the thoracic or abdominal breathing can be applied to the treatment of tumors is considered. The actual treatment of patients through the goggles of the respiratory cycle to create Amplitude mode Gated RapidArc treatment equipment that does not automatically apply to the results about 5-6 seconds stopped breathing in breathing synchronized rotary volumetric intensity modulated radiation therapy facilitate could see complement.

Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy (간암 호흡동조 방사선치료 환자의 호흡신호분석)

  • Kang, dong im;Jung, sang hoon;Kim, chul jong;Park, hee chul;Choi, byung ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Purpose : External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy Materials and Methods : May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40% ~ 60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Results : Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (${\pm}0.71sec$), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). Conclusion : This study is to analyze the acts after the breathing motion of the external markers recorded during the actual treatment was confirmed in a reproducible ratios of actual treatment of breathing motion during treatment, and Duty Cycle, planned respiratory gated window. Minimizing an error of the treatment plan using 4DCT and enhance the respiratory training and respiratory signal monitoring for effective treatment it is determined to be necessary.

  • PDF

Consideration of the Accuracy by Variation of Respiration in Real-time Position Management Respiratory Gating System (호흡동조 방사선치료에 사용되고 있는 RPM (Real-time Position Management) Respiratory Gating System의 호흡변화에 따른 정확성에 대한 고찰)

  • Na, Jun Young;Kang, Tae Young;Baek, Geum Mun;Kwon, Gyeong Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • Purpose: Respiratory Gated Radiation Therapy (RGRT) has been carried out using RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, varian, USA) in Asan Medical Center. This study was to analyze and evaluate the accuracy of Respiratory Gated Radiation Therapy (RGRT) according to variation of respiration. Materials and Methods: Making variation of respiration using Motion Phantom:QUASAR Programmable Respiratory Motion Phantom (Moudus Medical Device Inc. CANADA) able to adjust respiration pattern randomly was varying period, amplitude and baseline by analyze 50 patient's respiration of lung and liver cancer. One of the variations of respiration is baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. The other variation of respiration is baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm. Experiments were performed in the same way that is used RPM Respiratory Gating System (phase gating, usually 30~70% gating) in Asan Medical Center. Results: It was all exposed radiation under one of the conditions of baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. Under the other condition of baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm equally radiation was exposed. Conclusion: The variations of baseline shifts didn't accurately reflect on phase gating in RPM Respiratory Gating System. This inexactitude makes serious uncertainty in Respiratory Gated Radiation Therapy. So, Must be stabilized breathing of patient before conducting Respiratory Gated Radiation Therapy. also must be monitored breathing of patient in the middle of treatment. If you observe considerable changes of breathing when conducting Respiratory Gated Radiation Therapy. Stopping treatment immediately and then must be need to recheck treatment site using fluoroscopy. If patient's respiration rechecked using fluoroscopy restabilize, it is possible to restart Respiratory Gated Radiation Therapy.

  • PDF

Measurement of Respiratory Motion Signals for Respiratory Gating Radiation Therapy (호흡동조 방사선치료를 위한 호흡 움직임 신호 측정)

  • Chung, Jin-Beom;Chung, Won-Kyun;Kim, Yon-Lae;Lee, Jeong-Woo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.59-63
    • /
    • 2005
  • Respiration motion causes movement of internal structures in the thorax and abdomen, making accurate delivery of radiation therapy to tumors in those areas a challenge. Accounting for such motion during treatment, therefore, has the potential to reduce margins drawn around the clinical target volume (CTV), resulting in a lower dose to normal tissues (e.g., lung and liver) and thus a lower risk of treatment induced complications. Among the techniques that explicitly account for intrafraction motion are breath-hold, respiration gating, and 4D or tumor-tracking techniques. Respiration gating methods periodically turn the beam on when the patient's respiration signal is in a certain part of the respiratory cycle (generally end-inhale or end-exhale). These techniques require acquisition of some form of respiration motion signal (infrared reflective markers, spirometry, strain gauge, thermistor, video tracking of chest outlines and fluoroscopic tracking of implanted markers are some of the techniques employed to date), which is assumed to be correlated with internal anatomy motion. In preliminary study for the respiratory gating radiation therapy, we performed to measurement of this respiration motion signal. In order to measure the respiratory motion signals of patient, respiration measurement system (RMS) was composed with three sensor (spirometer, thermistor, and belt transducer), 4 channel data acquisition system and mobile computer. For two patients, we performed to evaluation of respiratory cycle and shape with RMS. We observed under this system that respiratory cycle is generally periodic but asymmetric, with the majority of time spent. As expected, RMS traced patient's respiration each other well and be easily handled for application.

  • PDF

Comprehensive Clinical Study of Concurrent Chemotherapy Breathing IMRT Middle Part of Locally Advanced Esophageal Cancer (국소진행성 중위부 식도암의 동시항암화학 호흡동조 세기변조방사선치료의 포괄적인 임상고찰)

  • Jung, Jae Hong;Kim, Seung-Chul;Moon, Seong-Kwon
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.463-475
    • /
    • 2015
  • The standard treatment of locally advanced type of mid-esophageal cancer is concurrent chemoradiation therapy (CRT). We evaluated the feasibility of chemotherapy with adding docetaxel to the classical basic regimens of cisplatin plus 5-fluorouracil (5-FU) and radiotherapy up to 70.2 Gy using dose escalations for esophageal cancer. It was possible to escalate radiation treatment dose up to 70.2 Gy by the respiratory-gated intensity-modulated radiotherapy (gated-IMRT) based on the 4DCT-simulation, with improving target coverage and normal tissue (ex., lung, heart, and spinal cord) sparing. This study suggested that the definitive chemo-radiotherapy with docetaxel, cisplatin, and 5-fluorouracil (i.e., DCF-R) and gating IMRT is tolerable and active in patients with locally advanced mid-esophageal cancer (AEC).

Target motion analysis of the respiratory gated guided radiotherapy in liver cancer patients using 4D-CT (4D-CT와 호흡동조시스템을 이용한 간암 환자의 방사선치료 표적 움직임 분석)

  • Dong, Kyung-Rae;Park, Byung-Soo;Kim, Sae-Sark;Kweon, Dae-Cheol;Goo, Eun-Hoe;Chung, Woon-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • The ultimate goal of radiation treatment is to use enough radiation dosage in order to examine a tumor while protecting normal tissue. Respiratory guided radiotherapy is being clinically implemented to examine a given stabilized area in order to compensate for the problems of patient breathing. This study investigates the effects of breathing movements on 40 patients with liver cancer through the actual radiation therapy plan using 4D-CT and respiratory guided radiotherapy using RPM. Using a commercial RPM respiratory gating system 4D-CT, we acquired 4D CT on multislice helical CT scanners that use different approaches to 4D CT image reconstruction. The results from analyzing forty patients according to age and direction showed no relationship between gender and transition change. The mean left-right, anteroposterior, and craniocaudal total movements were $3.19{\pm}1.29$, $5.44{\pm}2.07$, and $12.54{\pm}4.70$ mm, respectively. Changes were the largest with CC directions and as patients advanced in age, movements were larger. Therefore, as changes occur in treatment areas because of movements caused from breathing, respiratory gating system is put into operation to revise movement and can increase the radiotherapeutics effects in treating liver cancer.

Comparison of Practical Usefulness of Respirational Radiation Treatment Using Geant 4 Simulation Code (Geant 4 시뮬레이션 코드를 이용한 호흡 동조 방사선치료의 유용성 비교)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.637-643
    • /
    • 2019
  • To verify internal movements of the body, a DICOM file obtained from CT and a Geant4 code were used to simulate lung cancer patients. In addition, the method is applied to measure the movement of tumor when the movement of t he tumor is located inhale and exhale by creating a virtual tumor in the self-produced moving phantom, and to check the distribution of dose in the treatment plan and the accuracy of tumor in PTV for respiratory and lung cancer patients. It was confirmed that 97% or more respiratory control radiation therapy was effective even if the moving area was more than 3cm, in the 40% to 70% range. Dose distribution with respiratory radiation therapy applied to moving targets, measured by film in the actuation phantom, was shown to be within a 3mm margin of error for dose distribution containing 90%. It was confirmed that for actual patient breathing curves, the treatment time may be shorter than that due to the longer expiratory time.

Development of Movement Analysis Program and its Feasibility Test in Streotactic Body Radiation Threrapy (복부부위의 체부정위방사선치료시 호흡에 의한 움직임분석 프로그램 개발 및 유용성 평가)

  • Shin, Eun-Hyuk;Han, Young-Yih;Kim, Jin-Sung;Park, Hee-Chul;Shin, Jung-Suk;Ju, Sang-Gyu;Lee, Ji-Hea;Ahn, Jong-Ho;Lee, Jai-Ki;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.107-116
    • /
    • 2011
  • Respiratory gated radiation therapy and stereotactic body radiation therapy require identical tumor motions during each treatment with the motion detected in treatment planning CT. Therefore, this study developed a tumor motion monitoring and analysis system during the treatments employing RPM data, gated setup OBI images and a data analysis software. A respiratory training and guiding program which improves the regularity of breathing was used to patients. The breathing signal was obtained by RPM and the recorded data in the 4D console was read after treatment. The setup OBI images obtained gated at 0% and 50% of breathing phases were used to detect the tumor motion range in crenio-caudal direction. By matching the RPM data recorded at the OBI imaging time, a factor which converts the RPM motion to the tumor motion was computed. RPM data was entered to the institute developed data analysis software and the maximum, minimum, average of the breathing motion as well as the standard deviation of motion amplitude and period was computed. The computed result is exported in an excel file. The conversion factor was applied to the analyzed data to estimate the tumor motion. The accuracy of the developed method was tested by using a moving phantom, and the efficacy was evaluated for 10 stereotactic body radiation therapy patients. For the sine wave motion of the phantom with 4 sec of period and 2 cm of peak-to-peak amplitude, the measurement was slightly larger (4.052 sec) and the amplitude was smaller (1.952 cm). For patient treatment, one patient was evaluated not to qualified to SBRT due to the usability of the breathing, and in one patient case, the treatment was changed to respiratory gated treatment due the larger motion range of the tumor than treatment planed motion. The developed method and data analysis program was useful to estimate the tumor motion during treatment.

Production and Assessing Usefulness of the Moving Phantom for Respiration Gated Radiotherapy (호흡동조 방사선치료용 팬텀의 제작 및 유용성 평가)

  • Lee, Yang-Hoon;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2010
  • Purpose: The purpose of this study is that through production of phantom for respiration gated radiotherapy, assessing appropriacy of exposure dose for the therapy using RPM (Real-time Position Management). Materials and Methods: We located measurement object on the phantom for respiration gated radiotherapy made of 2 linear actuator, acrylic panel, stanchion, iron plate ets. to drive (up, down, front, back). Using 4D CT scan, we analyzed patient's respiration and reproduced the movement by computer. On the phantom, we located a 2D-Array (PTW) and an White water phantom (4.5 cm) and used DMLC (interval 2 cm) in the field size $10{\times}10\;cm$, then exposed 21EX X-ray 100 MU, in the case of phantom was (1) static (2) moving (3) gated using RPM respectively gantry $0^{\circ}$ and $90^{\circ}$ We measured with a 0.125 CC ionization chamber (PTW) on the phantom (7.5 cm) in the same condition. Results: Ionization chamber: There were within 0.3% of error with gating respiration and approximately 2% of error without gating in the same condition. 2D-Array: Gantry $90^{\circ}$, field size $10{\times}10\;cm$, using DMLC. There were within 3% of error with gating respiration and approximately 16% of error without gating. Conclusion: The phantom for respiration gated radiotherapy makes plans considering patient's movement, quantitative analysis of exposure dose and proper assessment therapy for IMRT patients using RPM possible.

  • PDF