• Title/Summary/Keyword: 호흡연습시스템

Search Result 4, Processing Time 0.027 seconds

Development and Utility Evaluation of Portable Respiration Training Device for Image-guided Stereotactic Body Radiation Therapy (SBRT) (영상유도 체부정위방사선 치료시 호흡동조를 위한 휴대형 호흡연습장치의 개발 및 유용성 평가)

  • Hwang, Seon Bung;Park, Mun Kyu;Park, Seung Woo;Cho, Yu Ra;Lee, Dong Han;Jung, Hai Jo;Ji, Young Hoon;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.264-270
    • /
    • 2014
  • This study developed a portable respiratory training device to improve breathing stability, which is an important element in using the CyberKnife Synchrony respiratory tracking device, one of the typical Stereotactic Radiation Therapy (SRT) devices. It produced an interface for users to be able to select one of two displays, a graph type and a bar type, supported an auditory system that helps them expect next respiration by improving a sense of rhythm of their respiratory period, and provided comfortable respiratory inducement. By targeting 5 applicants and applying individual respiratory period detected through a self-developed program, it acquired signal data of 'guide respiration' that induces breathing through signal data gained from 'free respiration' and an auditory system, and evaluated the usability by comparing deviation average values of respiratory period and respiratory amplitude. It could be identified that respiratory period decreased $55.74{\pm}0.14%$ compared to free respiration, and respiratory amplitude decreased $28.12{\pm}0.10%$ compared to free respiration, which confirmed the consistency and stability of respiratory. SBRT, developed based on these results, using the portable respiratory training device, for liver cancer or lung cancer, is evaluated to be able to help reduce delayed treatment time due to respiratory instability and improve treatment accuracy, and if it could be applied to developing respiratory training applications targeting an android-based portable device in the future, even use convenience and economic efficiency are expected.

Evaluation of the Usefulness of the Respiratory Guidance System in the Respiratory Gating Radiation Therapy (호흡동조 방사선치료 시 호흡유도시스템의 유용성 평가)

  • Lee, Yeong-Cheol;Kim, Sun-Myung;Do, Gyeong-Min;Park, Geun-Yong;Kim, Gun-Oh;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.167-174
    • /
    • 2012
  • Purpose: The respiration is one of the most important factors in respiratory gating radiation therapy (RGRT). We have developed an unique respiratory guidance system using an audio-visual system in order to support and stabilize individual patient's respiration and evaluated the usefulness of this system. Materials and Methods: Seven patients received the RGRT at our clinic from June 2011 to April 2012. After breathing exercise with the audio-visual system, we measured their spontaneous respiration and their respiration with the audio-visual system respectively. With the measured data, we yielded standard deviations by the superficial contents of respiratory cycles and functions, and analyzed them to examine changes in their breathing before and after the therapy. Results: The PTP (peak to peak) of the standard deviations of the free breathing, the audio guidance system, and the respiratory guidance system were 0.343, 0.148, and 0.078 respectively. The respiratory cycles were 0.645, 0.345, and 0.171 respectively and the superficial contents of the respiratory functions were 2.591, 1.008, and 0.877 respectively. The average values of the differences in the standard deviations among the whole patients at the CT room and therapy room were 0.425 for the PTP, 1.566 for the respiratory cycles, and 3.671 for the respiratory superficial contents. As for the standard deviations before and after the application of the PTP respiratory guidance system, that of the PTP was 0.265, that of the respiratory cycles was 0.474, and that of the respiratory superficial contents. The results of t-test of the values before and after free breathing and the audio-visual guidance system showed that the P-value of the PTP was 0.035, that of the cycles 0.009, and that of the respiratory superficial contents 0.010. Conclusion: The respiratory control could be one of the most important factors in the RGRT which determines the success or failure of a treatment. We were able to get more stable breathing with the audio-visual respiratory guidance system than free breathing or breathing with auditory guidance alone. In particular, the above system was excellent at the reproduction of respiratory cycles in care units. Such a system enables to reduce time due to unstable breathing and to perform more precise and detailed treatment.

  • PDF

Usefulness of Gated RapidArc Radiation Therapy Patient evaluation and applied with the Amplitude mode (호흡 동조 체적 세기조절 회전 방사선치료의 유용성 평가와 진폭모드를 이용한 환자적용)

  • Kim, Sung Ki;Lim, Hhyun Sil;Kim, Wan Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose : This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95% agreement. The rotational intensity modulated radiation therapy, respiratory synchronized to the respiratory cycle created Amplitude mode and the actual patient's breathing cycle could be seen that a good agreement. Conclusion : When you are treated Non-respiratory and respiratory method between volumetric intensity modulated radiation therapy rotation of the absolute dose and dose distribution showed a very good agreement. This breathing technique tuning volumetric intensity modulated radiation therapy using a rotary moving along the thoracic or abdominal breathing can be applied to the treatment of tumors is considered. The actual treatment of patients through the goggles of the respiratory cycle to create Amplitude mode Gated RapidArc treatment equipment that does not automatically apply to the results about 5-6 seconds stopped breathing in breathing synchronized rotary volumetric intensity modulated radiation therapy facilitate could see complement.

Tube phonation in water for patients with hyperfunctional voice disorders: The effect of tube diameter and water immersion depth on bubble height and maximum phonation time (과기능적 음성장애 환자의 물저항발성: 튜브 직경과 물 깊이가 물거품 높이 및 최대발성지속시간에 미치는 영향)

  • Min Gyeong Kim;Seong Hee Choi;Jong-In Youn
    • Phonetics and Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • Tube phonation in water has been widely used for voice training among semi-occluded vocal tract (SOVT) exercises in which the patient bubbles with phonation keeping the tube submerged in water. This study aims to investigate the effect of tube diameter and water depth on bubble height and maximum phonation time (MPT) for patients with hyperfunctional voice disorders. Seventeen patients with hyperfunctional voice disorders were asked to bubble with sustained /u/ at the different inner diameters of tube (5, 7, and 10 mm), water depth (4, 7, and 10 cm). A water resistance phonation biofeedback system using a water height sensor was used for recording bubble height and MPT. The bubble height was significantly changed by the tube diameter while MPT was significantly changed with the tube diameter and water depth. Although the wider tube presented significantly lower bubble height for a given depth, relatively consistent bubble height was maintained. Depending on the water depth, the bubble height did not significantly differ for a given tube diameter. In addtion, MPT significantly decreased with water depth and a wider tube led significantly shorter MPT. A water level-driven water resistance biofeedback system provided useful information on bubble characteristics and vocal fold vibration depending on tube diameter and water depth. It can be useful to monitor the breath support during water resistance phonation for patients with hyperfunctional voice disorders.