• Title/Summary/Keyword: 호이산화탄소성

Search Result 69, Processing Time 0.026 seconds

Dispersion Polymerization of Acrylate Monomers in Supercritical $CO_2$ using GMA-functionalized Reactive Surfactant (초임계 이산화탄소에서 Glycidyl methacrylate 반응성 계면활성제를 이용한 아크릴레이트의 분산중합)

  • Park, Kyung-Kyu;Kang, Chang-Min;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.256-262
    • /
    • 2010
  • Dispersion polymerization of methyl acrylate, ethyl acrylate, butyl acrylate, and glycidyl methacrylate were performed in supercritical $CO_2$ at $80\;^{\circ}C$ and 346 bar. Glycidyl methacrylate linked poly(dimethylsiloxane) (GMS-PDMS) surfactant, which was prepared by linking glycidyl methacrylate to monoglycidyl ether terminated PDMS with amino-propyltriethoxysilane, was used as surfactant for the dispersion polymerization in $CO_2$. The yield of the poly(alkyl acrylate) polymers, synthesized in $CO_2$ medium, decreased as the alkyl tail of the acrylate monomers increased. Poly(glycidyl methacrylate) and poly(methyl acrylate) were produced in bead form whereas poly(ethyl acrylate) and poly(butyl acrylate) were viscous liquid. The poly(glycidyl methacrylate) particles had a number average diameter of 2.45 ${\mu}m$ and monodisperse distribution. The poly(methyl acrylate) had a number average diameter of 0.52 ${\mu}m$ and the particle size distribution was bimodal. The glass transition temperatures ($T_g$) of the poly(glycidyl methacrylate) and the poly(alkyl acrylate) products were 4~9 K higher than the $T_g$ of the corresponding acrylate polymers synthesized in conventional processes.

A Experimental Study for the Disaster Monitoring by Integration of USN and Spatial Information (USN과 공간정보의 통합에 의한 방재모니터링 실험 연구)

  • Yeon, Sang-Ho;Lee, Young-Wook;Kim, Sang-Jin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.75-76
    • /
    • 2014
  • 본 연구는 국토 공간정보 기반으로 새로운 위성측량 기술과 USN 측정기술을 접목하고 구체적인 AGS 공법과 같은 그라우팅 기술의 적용으로, 방재를 필요로 하는 주요 수리시설물에 대한 정밀한 변위와 거동을 모니터링 할 수 있는 첨단기술의 개발 및 적용은 국가적으로 매우 중요한 과제이며 실용성이 높은 기술연구이다. 외부공간에서의 GNSS 위성측위 방식의 초정밀의 위치변위를 실시간으로 추적하고 그에 영향을 주는 환경인자인 온도, 습도, 조도, 이산화탄소, 질소, 함수비, 소음진동 등은 무선 USN에 의하여 실시간으로 동시에 수집하여 통합적으로 분석 적용하여 방재시설의 적절한 대응시기를 찾아낼 수 있을 것으로 판단되며, 특히 정밀한 변위 관측을 필요로 하는 안전진단 및 방재를 필요로 하는 시설물 안전관리 분야에서 다방면으로 크게 활용할 수 있는 방안을 모색하였다.

  • PDF

Greenhouse Gas ($CO_2$) Geological Sequestration and Geomechanical Technology Component (온실가스($CO_2$) 지중저장과 암반공학적 기술요소)

  • Kim, Hyung-Mok;Park, Eui-Seob;Synn, Joong-Ho;Park, Yong-Chan
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.175-184
    • /
    • 2008
  • In this study, state-of-the-art of $CO_2$ geological sequestration as a method of greenhouse gas reduction was reviewed. Thermal-Hydraulic-Mechanically(THM) coupled simulation technology and its application to a stability analysis of geological formation due to $CO_2$ injection as well as a leakage path analysis were investigated and introduced.

유류오염토양 정화를 위한 biopile의 현장적용

  • Jo Jang-Hwan;Park Jeong-Gu;Seo Chang-Il;Jeon Gwon-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.155-158
    • /
    • 2005
  • 본 연구에서는 현장규모의 biopile을 제작하여 유류로 오염된 토양을 정화하였다. 오염토양의 TPH농도는 평균 2,800mg/kg(최고 3,590mg/kg)이었으며, 오염토양의 양은 $746m^3$이었다. Biopile $(17{\times}20{\times}2.5m)$을 약 3개월간 운전하며 일정 시간 간격으로 토양가스($O_2,\;CO_2)$ 및 VOCs) 및 토양의 TPH농도를 분석하였다. 지속적인 공기의 주입/추출에 의해 biopile내부는 호기조건을 유지하였으며, 미생물의 활성도 증가에 따라 이산화탄소의 농도가 증가하는 경향을 나타내었다. 또한 토양가스 분석결과 휘발성 유기오염물질(VOCs)은 약 40일 경과 후 90% 제거되었으며, 90일 경과 후 토양의 TPH 제거율은 98%로 나타났다.

  • PDF

Research on Battery Recycling for Railway System (철도차량용 폐배터리 재활용 방안 연구)

  • Kim, Dae-Hyun;Park, Sin-Young;Cho, In-Ho;Lee, Chang-Moo
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.127-128
    • /
    • 2018
  • 최근 전 세계적으로 온실가스에 의한 환경 문제가 심각해짐에 따라 수송 분야에서 친환경 에너지를 사용하는 요구가 확대되고 있다. 철도분야에서도 이산화탄소 배출 통제와 더불어 추진에너지로서의 배터리의 사용을 검토하고 있고 관련된 연구가 증가하고 있다. 전기자동차에 비해 철도차량의 배터리는 대용량이 필요하며 철도운영 특성상 초기 도입 비용은 물론 유지관리 비용도 발생된다는 한계점이 있다. 본 연구에서는 배터리를 적용한 철도차량의 경제성을 높이기 위해 철도차량용 폐배터리의 재활용 방안에 대해서 연구해 보겠다. 이를 위해 현재 전기자동차분야의 폐배터리 재활용 동향에 대해 알아보고 철도차량용 배터리의 재활용 가능성을 검토해보겠다.

  • PDF

Measurement and Analysis of Indoor Thermal Environment in Passenger Car (철도차량 객차내 온열환경 측정 분석)

  • So, Jin-Sub;Yoo, Seong-Yeon
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.120-125
    • /
    • 2008
  • The Ministry of Environment established a guide line Indoor Air Quality Management guidelines in Public Facilities in December 2006. As the items of the guideline, $CO_2$ (Carbon dioxide) and PM10 (Particulate matter). Therefore trains and subway need to control air quality. The indoor thermal environment in passenger car is very important for the enhancement of the amenity and health of passengers. Many researchers have studied it not for train but for building. So, in this study, we have performed thermal environment in passenger car (KTX, Mugunghwa, Saemaeul), and verified the relation between the PMV (Predicted Mean Vote) and PPD (Predicted Percent Dissatisfied) from September to October 2007. As a result, the average PMV value for each trains are 0.1, 0.22 for KTX, 0 for Mugunghwa, 0.1 for Saemaeul. So it satisfies the ASHRAE Handbook thermal environmental limit (-0.5 < PMV < +0.5).

Design of Database and System for Application of Forest Biomass (산림바이오매스 활용을 위한 데이터베이스 및 시스템 설계)

  • Lee, Hyun Jik;Koo, Dae Soung;Ru, Ji Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2013
  • Due to the global warming, international agreements have been propelled by industrialized countries. These days, there are various studies and projects to reduce the carbon emission quantity in South Korea, because South Korea is a strong candidate for a newly industrialized nation by Kyoto Protocol. Therefore, this study arranges plans to create various thematic map by producing database that can manage various datum based on grid spatial objects to manage quantity of forest biomass and carbon dioxide. Moreover, this study designs a system to create forest biomass by using the best method of calculation with LiDAR data and KOMPSAT-2 satellite images. In addition, this study designs a biomass monitoring system for public institutions to register biomass, suggesting actual plans to extract, manage, and utilized forest biomass.

Evaluation of Scab Resistance and Effect of Photosynthetic Rates on Fruit Characteristics among Elite Pear Seedlings (배 우량계통의 검은별무늬병 저항성 평가 및 광합성률이 과실 품질에 미치는 영향 구명)

  • Won, Kyung-Ho;Kang, Sam-Seok;Kim, Yoon-Kyeong;Sherzod, Rajametov;Lim, Kyeong-Ho;Lee, Han-Chan
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.117-122
    • /
    • 2013
  • BACKGROUND: The scab, which is caused by Venturia nashicola, gives serious damages to pear trees. 'Niitaka' accounts for 82% of areas in pear cultivation. However 'Niitaka' is a scab susceptible cultivar. So, most of Korean farmers who growing pear trees have suffered by economic losses with the scab. In this research, we evaluated the scab resistance among elite pear seedlings to clarify genetics about the scab resistance. And we analyzed photosynthetic features with these seedlings to develop suitable cultivar which is advantageous for producing quality fruits during the growth and development of plants. METHODS AND RESULTS: We measured the rates of scab incidence among seedlings in a field experiment condition and an in-vitro test. An in-vitro test has been done with field experiment-based results. We made plant materials by grafting branches of each seedlings with 'Kongbae' rootstocks. And they had been grown for one month. Then, scab conidia suspension is sprayed to seedlings and sustained for 40 days under the controlled environment. As the results, 6 seedlings displayed lower incidence rates than other seedlings and 'Niitaka'. We also measured instant photosynthetic rates of each seedlings to determine the correlation between photosynthetic rates and fruit characteristics. However, it seemed that there is no correlation between them. CONCLUSION(S): Among the seedlings, 6 seedlings displayed the higher resistance to scab than other seedlings and 'Niitaka'. This characteristics is considered to be come from the gene expression of European pear. And we found that photosynthetic rate in trees rarely does not influence the fruit characteristics. It is considered to be affected by cultivar's own characteristics.

Performance Based Evaluation of Concrete Carbonation from Climate Change Effect on Curing Conditions of Wind Speed and Sunlight Exposure Time (기후변화의 풍속과 일조시간 양생조건에 따른 콘크리트 탄산화 성능중심평가)

  • Kim, Tae-Kyun;Shin, Jae-Ho;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.45-55
    • /
    • 2015
  • Currently, extreme weather events such as super typhoon, extreme snowfall, and heat wave are frequently occurring all over the world by natural and human caused factors. After industrial growth in the 1970s, earth's temperature has risen sharply. due to greenhouse effect. Global warming can be attributed to gases emitted from using fossil fuel such as average carbon dioxide, perfluorocarbons, nitrous oxide, and methane. Especially, carbon dioxide has the highest composition of about 90%. in the fossile fuel usage emitted gas. Concrete has excellent durability as a building material climate change. However, due to various of physical and chemical environmental effect such as conditions during its curing process, the performance degradation may occur. Carbon dioxide in the atmosphere causes steel corrosion and durability decreases by lowering the alkalinity of concrete. Therefore, in this study, concrete durability performance with respect to carbonation from curing conditions change due to wind speed and sunshine exposure time. Concrete carbonation experiment are performed. using wind speed (0, 2, 4, 6) m/s and sunlight exposure time (2, 4, 6, 8) hrs. Also, performance based evaluation through the satisfaction curve based on the carbonation depth and carbonation rate test results are performed.

Study of CO2 Absorption Characteristic and Synthesis of 1-(2-methoxyethyl)-3-methylimidazoLium Methanesulfonate Ionic Liquid (1-(2-methoxyethyl)-3-methylimidazolium Methanesulfonate 이온성 액체 합성 및 CO2 흡수 특성 연구)

  • Jin, Yu Ran;Jung, Yoon Ho;Park, So Jin;Baek, Il Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • In this study, 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate ionic liquid has been synthesized, characterized and tested with respect to carbon dioxide absorption with the aim to use it as advanced absorbent materials in fossil fuel processing. The ionic liquid was synthesized by a one step method, low cost. The thermal and chemical stability of selected ionic liquid has been investigated by DSC, TGA and the structure was verified by $^1H$-NMR spectroscopy. The solubility of carbon dioxide in the methanesulfonate-based ionic liquids were measured using a high-pressure equilibrium apparatus equipped with a variable-volume view cell at 30, 50 and $70^{\circ}C$ and pressure up to 195 bar. The results show that carbon dioxide solubilities of 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate increased with pressure increasing and temperature decreasing, and the carbon dioxide absorption capacity showed 27.6 $CO_2/IL$(g/kg) at $30^{\circ}C$, 13 bar.