• Title/Summary/Keyword: 호스 적재 방법

Search Result 2, Processing Time 0.017 seconds

Effect of indoor fire hydrant hose loading method on rapid fire suppression (옥내소화전 호스 적재 방법이 신속한 화재진압에 미치는영향)

  • Jeon, Jai-In
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.535-539
    • /
    • 2022
  • This study analyzed the efficient hose loading method for indoor fire hydrants, and the experimental results are as follows. An effective fire hose loading method is to be derived through an experiment comparing the fire hose loading method of an indoor fire hydrant and the speed of fire suppression. When the fire hose was loaded by folding, it took an average of 33 seconds to load the fire hose, and for the hangyeopsal, it took an average of 69 seconds to load the fire hose, showing a significant difference. First, in the folding hose deployment experiment, subjects A, C, D, and E showed similar values from 34 seconds to 37 seconds, respectively. The reason seems to be the result of the fact that the fire hose was not twisted when unfolding, and that it was possible to deploy the hose smoothly. Subject B showed the lowest deployment time at 25 seconds, which seems to be the result of B's experience in deploying the fire hose. Second, in the hose unfolding experiment, subjects A, B, C, and E had a similar time period of 44 to 76 seconds, respectively. However, the test subject D was significantly higher at 110 seconds. The reason is that the attempt to prevent hose kinking when deploying the fire hose and the unstable psychological state through tension are judged to increase the fire hose deployment time.

A Study on Fire Suppression Measures Used in Wooden Temples (목조 사찰화재의 유형별 진압대책에 관한 연구)

  • Ko, Gi-Bong;Lee, Si-Young;Chae, Jin
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.10-17
    • /
    • 2012
  • This study classifies the fire suppression measures implemented by wooden temples into four types according to availability of the pump trucks (water tanks) at the fire sites. And this study outlines the strategies and methods based on each type of fire suppression measure. The results show that the fire suppression strategy applied in general buildings is also employed in temples where pump trucks (water tanks) and fire-fighting water are available. For temples where trucks and water are not available, the helicopter, water bag, fire suppression strategy focused on water supply link, automatic transmission system of a fire engine's level by using radio communication network, and water bladder are used. In addition, general four-wheel-drive vehicles equipped with fire fighting tools such as motor pump, hose, nozzle, and water bladder should be deployed in fire stations around the temples. A fire suppression strategy using A-type ladders is also required.