• Title/Summary/Keyword: 호모그래피

Search Result 93, Processing Time 0.022 seconds

Error Correction of Interested Points Tracking for Improving Registration Accuracy of Aerial Image Sequences (항공연속영상 등록 정확도 향상을 위한 특징점추적 오류검정)

  • Sukhee, Ochirbat;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • This paper presents the improved KLT(Kanade-Lucas-Tomasi) of registration of Image sequence captured by camera mounted on unmanned helicopter assuming without camera attitude information. It consists of following procedures for the proposed image registration. The initial interested points are detected by characteristic curve matching via dynamic programming which has been used for detecting and tracking corner points thorough image sequence. Outliers of tracked points are then removed by using Random Sample And Consensus(RANSAC) robust estimation and all remained corner points are classified as inliers by homography algorithm. The rectified images are then resampled by bilinear interpolation. Experiment shows that our method can make the suitable registration of image sequence with large motion.

Moving Object Detection and Tracking Techniques for Error Reduction (오인식률 감소를 위한 이동 물체 검출 및 추적 기법)

  • Hwang, Seung-Jun;Ko, Ha-Yoon;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • In this paper, we propose a moving object detection and tracking algorithm based on multi-frame feature point tracking information to reduce false positives. However, there are problems of detection error and tracking speed in existing studies. In order to compensate for this, we first calculate the corner feature points and the optical flow of multiple frames for camera movement compensation and object tracking. Next, the tracking error of the optical flow is reduced by the multi-frame forward-backward tracking, and the traced feature points are divided into the background and the moving object candidate based on homography and RANSAC algorithm for camera movement compensation. Among the transformed corner feature points, the outlier points removed by the RANSAC are clustered and the outlier cluster of a certain size is classified as the moving object candidate. Objects classified as moving object candidates are tracked according to label tracking based data association analysis. In this paper, we prove that the proposed algorithm improves both precision and recall compared with existing algorithms by using quadrotor image - based detection and tracking performance experiments.

High-resolution 3D Object Reconstruction using Multiple Cameras (다수의 카메라를 활용한 고해상도 3차원 객체 복원 시스템)

  • Hwang, Sung Soo;Yoo, Jisung;Kim, Hee-Dong;Kim, Sujung;Paeng, Kyunghyun;Kim, Seong Dae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.150-161
    • /
    • 2013
  • This paper presents a new system which produces high resolution 3D contents by capturing multiview images of an object using multiple cameras, and estimating geometric and texture information of the object from the captured images. Even though a variety of multiview image-based 3D reconstruction systems have been proposed, it was difficult to generate high resolution 3D contents because multiview image-based 3D reconstruction requires a large amount of memory and computation. In order to reduce computational complexity and memory size for 3D reconstruction, the proposed system predetermines the regions in input images where an object can exist to extract object boundaries fast. And for fast computation of a visual hull, the system represents silhouettes and 3D-2D projection/back-projection relations by chain codes and 1D homographies, respectively. The geometric data of the reconstructed object is compactly represented by a 3D segment-based data format which is called DoCube, and the 3D object is finally reconstructed after 3D mesh generation and texture mapping are performed. Experimental results show that the proposed system produces 3D object contents of $800{\times}800{\times}800$ resolution with a rate of 2.2 seconds per frame.