• Title/Summary/Keyword: 호기말양압

Search Result 12, Processing Time 0.036 seconds

The Changes of Respiratory Mechanics by a Bronchodilator Inhalation Under the Variable Level of PEEP in Patients with Acute Respiratory Distress Syndrome (급성호흡곤란증후군에서 기도확장제 투여 전후에 호기말양압 수준의 변화가 호흡역학에 미치는 영향)

  • Hong, Sang-Bum;Koh, Youn-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.3
    • /
    • pp.251-259
    • /
    • 2002
  • Background : Reduced lung compliance and increased lung resistance are the primary lung mechanical abnormalities in acute respiratory distress syndrome (ARDS). Although there is little information regarding the mechanisms responsible for the increases in the respiratory resistance of ARDS, bronchodilators have been frequently administered in mechanically ventilated ARDS patients. To determine the effect of a bronchodilator on the respiratory mechanics depending on the level of applied positive end-expiratory pressure (PEEP), the changes in the respiratory mechanics by salbutamol inhalation was measured under the variable PEEP level in patients with ARDS. Materials and Methods : Fifteen mechanically ventilated paralyzed ARDS patients (14 of male, mean age 57 years) were enrolled in this study. The respiratory system compliance, and the maximum and minimum inspiratory resistance were obtained by the end-inspiratory occlusion method during constant flow inflation using the CP-100 pulmonary monitor (Bicore, Irvine, CA, USA). The measurements were performed at randomly applied 8, 10 and 12 cm $H_2O$ PEEP before and 30 mins after administrating salbutamol using a meter-dose-inhaler (100ug${\times}$6). Results : 1) The maximum inspiratory resistance of the lung was higher than the reported normal values due to an increase in the minimal inspiratory resistance & additional resistance. 2) The maximum inspiratory resistance and peak airway pressure were significantly higher at 12cm $H_2O$ of PEEP compared with those at 10cm $H_2O$ of PEEP. 3) Salbutamol induced a significant decrease in the maximum and the minimum inspiratory resistance but no significant change in the additional resistance only was observed at 12cm $H_2O$ of PEEP(from $15.66{\pm}1.99$ to $13.54{\pm}2.41$, from $10.24{\pm}2.98$ to $8.04{\pm}2.34$, and from $5.42{\pm}3.41$ to $5.50{\pm}3.58cm$ $H_2O$/L/sec, respectively). 4)The lung compliance did not change at the applied PEEP and salbutamol inhalation levels. Conclusion : The bronchodilator response would be different depending on the level of applied PEEP despite the increased respiratory resistance in patients with ARDS.

The Effect of Positive end Expiratory pressure on the Pulmonary Capillary Pressure in Acute Lung Injury Patients (급성폐손상환자에서 호기말양압의 변화가 폐모세혈관압에 미치는 영향)

  • Chung, Byung-Chun;Byun, Chang-Gyoo;Lee, Chang-Youl;Kim, Hyung-Jung;An, Chul-Min;Kim, Sung-Kyu;Shin, Cheung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.5
    • /
    • pp.594-600
    • /
    • 2000
  • Background : Positive end expiratory pressure (PEEP) ventilation is well established as an integral part of the management of patients with the acute lung injury. PEEP is a key element in the treatment of hypoxemia resulting from pulmonary edema. Pulmonary capillary pressure (Pcap) is the most important factor influencing lung edema formation, and an understanding of how Pcap is altered by variations of PEEP or pulmonary arterial occlusion pressure (PAOP) is important to improve the treatment of acute lung injury patients. This study was performed to evaluate the effects of PEEP on the pulmonary capillary pressure in acute lung injury patients. Methods : This was a prospective study of 11 acute lung injury patients. The effect of PEEP on pulmonary circulation at four different levels (0,4,8, and 12cm$H_2O$) was analyzed. Pcap was estimated visually at bed side with Swan Ganz catheters. The pulmonary vasculature was analyzed by calculating the pressure difference at the arterial and venous parts of the circulation. Results: As PEEP increased from 0 to 12 cm$H_2O$, the mean pulmonary arterial pressure (PAP) and Pcap increased respectively from $22.7{\pm}7.4$ to $25.3{\pm}7.3$ mmHg and $15.3{\pm}3.3$ to $17.8{\pm}3.2$ mmHg (p<0.05). Similarly, PAOP increased from $9.8{\pm}2.1$ to $12.8{\pm}2.1$ mmHg and the central venous pressure increased from $6.1{\pm}1.6$ to $9.3{\pm}2.3$ mmHg(p<0.05). However, the pressure gradient at the arterial (PAP-Pcap) and venous (Pcap-Pcwp) parts of pulmonary circulation remained unchanged at all evaluated PEEP levels. Conclusion : Although Pcap increased gradually with increased the pressure gradient at the arterial and venous part of the pulmonary vasculature remained unchanged at all evaluated PEEP levels in acute lung injury patients.

  • PDF

The Effect of External PEEP on Work of Breathing in Patients with Auto-PEEP (Auto-PEEP이 존재하는 환자에서 호흡 일에 대한 External PEEP의 효과)

  • Chin, Jae-Yong;Lim, Chae-Man;Koh, Youn-Suck;Park, Pyung-Whan;Choi, Jong-Moo;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.201-209
    • /
    • 1996
  • Background : Auto-PEEP which develops when expiratory lung emptying is not finished until the beginning of next inspiration is frequently found in patients on mechanical ventilation. Its presence imposes increased risk of barotrauma and hypotension, as well as increased work of breathing (WOB) by adding inspiratory threshold load and/or adversely affecting to inspiratory trigger sensitivity. The aim of this study is to evaluate the relationship of auto-PEEP with WOB and to evaluate the effect of PEEP applied by ventilator (external PEEP) on WOB in patients with auto-PEEP. Method : 15 patients, who required mechanical ventilation for management of acute respiratory failure, were studied. First, the differences in WOB and other indices of respiratory mechanics were examined between 7 patients with auto-PEEP and 8 patients without auto-PEEP. Then, we applied the 3 cm $H_2O$ of external PEEP to patients with auto-PEEP and evaluated its effects on lung mechanics as well as WOB. Indices of respiratory mechanics including tidal volume ($V_T$), repiratory rate, minute ventilation ($V_E$), peak inspiratory flow rate (PIFR), peak expiratory flow rate (PEFR), peak inspiratory pressure (PIP), $T_I/T_{TOT}$, auto-PEEP, dynamic compliance of lung (Cdyn), expiratory airway resistance (RAWe), mean airway resistance (RAWm), $p_{0.1}$, work of breathing performed by patient (WOB), and pressure-time product (PTP) were obtained by CP-100 Pulmonary Monitor (Bicore, USA). The values were expressed as mean $\pm$ SEM (standard error of mean). Results : 1) Comparison of WOB and other indices of respiratory mechanics in patients with and without auto-PEEP : There was significant increase in WOB ($l.71{\pm}0.24$ vs $0.50{\pm}0.19\;J/L$, p=0.007), PTP ($317{\pm}70$ vs $98{\pm}36\;cm$ $H_2O{\cdot}sec/min$, p=0.023), RAWe ($35.6{\pm}5.7$ vs $18.2{\pm}2.3\;cm$ H2O/L/sec, p=0.023), RAWm ($28.8{\pm}2.5$ vs $11.9{\pm}2.0cm$ H2O/L/sec, p=0.001) and $P_{0.1}$ ($6.2{\pm}1.0$ vs 2.9+0.6 cm H2O, p=0.021) in patients with auto-PEEP compared to patients without auto-PEEP. The differences of other indices including $V_T$, PEFR, $V_E$ and $T_I/T_{TOT}$ showed no significance. 2) Effect of 3 cm $H_2O$ external PEEP on respiratory mechanics in patients with auto-PEEP : When 3 cm $H_2O$ of external PEEP was applied, there were significant decrease in WOB ($1.71{\pm}0.24$ vs $1.20{\pm}0.21\;J/L$, p=0.021) and PTP ($317{\pm}70$ vs $231{\pm}55\;cm$ $H_2O{\cdot}sec/min$, p=0.038). RAWm showed a tendency to decrease ($28.8{\pm}2.5$ vs $23.9{\pm}2.1\;cm$ $H_2O$, p=0.051). But PIP was increased with application of 3 cm $H_2O$ of external PEEP ($16{\pm}2$ vs $22{\pm}3\;cm$ $H_2O$, p=0.008). $V_T$, $V_E$, PEFR, $T_I/T_{TOT}$ and Cdyn did not change significantly. Conclusion : The presence of auto-PEEP in mechanically ventilated patients was accompanied with increased WOB performed by patient, and this WOB was decreased by 3 cm $H_2O$ of externally applied PEEP. But, with 3 cm $H_2O$ of external PEEP, increased PIP was noted, implying the importance of close monitoring of the airway pressure during application of external PEEP.

  • PDF

Delayed Bronchoplasty in Complete Transection of Left Main Bronchus after Blunt Trauma (외상성 좌측주기관지 절단환자의 지연수술 치험)

  • 김명천;이재영;조규식;박주철;유세영
    • Journal of Chest Surgery
    • /
    • v.31 no.2
    • /
    • pp.182-185
    • /
    • 1998
  • Recently, The non-penetrating injury of bronchus has been increased, especially by traffic accident. Early diagnosis and primary repair of bronchial injury not only restore normal lung function but also avoid the difficulties and complications associated with delayed diagnosis and repair. This report describes about a case of total collapse and consolidation of left lung with the complete transection of nearly bifurcated portion of left main bronchus , lasted for 2weeks after traffic accident. This was diagnosed by fiberbronchoscopy and 3-D chest computed tomography(CT). She underwent the sleeve resection and end to end anastomosis, and postoperative PEEP for 2 days, suctioning twice by fiberbronchoscopy, continue postural drainge and physiotherapy were applied. She had almost full expansion of the left lung at discharge.

  • PDF

The Usefulness of Noninvasive Positive Pressure Ventilation as a New Weaning Method (새로운 이탈방법으로서 비침습적 양압환기법의 유용성)

  • Shim, Tae-Sun;Koh, Youn-Suck;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Lim, Chae-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.4
    • /
    • pp.500-511
    • /
    • 1999
  • Background: Noninvasive positive pressure ventilation (NPPV) using facial or nasal mask have been widely used for several years in stable patients with chronic neuromuscular disease or central alveolar hypoventilation, and recently have been tried in patients with acute respiratory failure. In a few studies, NPPV was also used to rescue the patients with post-extubation respiratory failure. However, yet it has not been adopted as a weaning method in patients on long-term mechanical ventilation. So we performed this prospective clinical study to evaluate the usefulness of NPPV as a weaning method after removing endotracheal tube intentionally in patients on long-term mechanical ventilation. Method: Twelve patients who had been on invasive mechanical ventilation over 10 days were enrolled and 14 trials of NPPV were done. All had failed at least one weaning trial and showed ventilator dependence(pressure support requirement between 8-15cm $H_2O$, and PEEP requirement between 5-10cm $H_2O$), so tracheostomy was being considered. After removing the endotracheal tube, NPPV was applied using facial mask. Respiratory rate, arterial blood gas, pressure support level, and PEEP level were monitored just before intended extubation, at 30 minutes, 1 to 6, 6 to 12, 12 to 24 hours, 2nd day, and 3rd day following initiation of NPPV, and just before weaning from NPPV. The successful weaning was defined as spontaneous breathing off the ventilator for 48 hours or longer without respiratory distress. Results: The weaning through NPPV after intended extubation was successful in 7(50%) of 14 trials, and tracheostomy could be avoided in them. There were no differences in age, sex, APACHE III score, duration of invasive mechanical ventilation, baseline respiratory rate, $PaCO_2$ $PaO_2/FiO_2$, and ventilatory requirement(PS and PEEP) between the success and failure groups. In the success group, respiratory rate, pH, $PaCO_2$, and $PaO_2/FiO_2$ were not different between invasive MV and NPPV period. But in the failure group, pH decreased after 30 minutes of NPPV initiation compared with that of invasive MV($7.40\pm0.08$ vs. $7.34\pm0.06$, p<0.05). The causes of failure were worsening of ABG(n=3), retained tracheal secretion(n=2), mask intolerance(n=1), and flail chest(n=1). Conclusion: NPPV may be worth trying as a bridge method in weaning patients on long-term invasive mechanical ventilation.

  • PDF

The Effect and Safety of Alveolar Recruitment Maneuver using Pressure-Controlled Ventilation in Acute Lung Injury and Acute Respiratory Distress Syndrome (급성폐손상과 급성호흡곤란증후군 환자에서 압력조절환기법을 이용한 폐포모집술의 효과와 안정성)

  • Chung, Kyung Soo;Park, Byung Hoon;Shin, Sang Yun;Jeon, Han Ho;Park, Seon Cheol;Kang, Shin Myung;Park, Moo Suk;Han, Chang Hoon;Kim, Chong Ju;Lee, Sun Min;Kim, Se Kyu;Chang, Joon;Kim, Sung Kyu;Kim, Young Sam
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.5
    • /
    • pp.423-429
    • /
    • 2007
  • Background: Alveolar recruitment (RM) is one of the primary goals of respiratory care for an acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The purposes of alveolar recruitment are an improvement in pulmonary gas exchange and the protection of atelectrauma. This study examined the effect and safety of the alveolar RM using pressure control ventilation (PCV) in early ALI and ARDS patients. Methods: Sixteen patients with early ALI and ARDS who underwent alveolar RM using PCV were enrolled in this study. The patients data were recorded at the baseline, and 20 minutes, and 60 minutes after alveolar RM, and on the next day after the maneuver. Alveolar RM was performed with an inspiratory pressure of $30cmH_2O$ and a PEEP of $20cmH_2O$ in a 2-minute PCV mode. The venous $O_2$ saturation, central venous pressure, blood pressure, pulse rate, $PaO_2/FiO_2$ ratio, PEEP, and chest X-ray findings were obtained before and after alveolar RM. Results: Of the 16 patients, 3 had extra-pulmonary ALI/ARDS and the remaining 13 had pulmonary ALI/ARDS. The mean PEEP was 11.3 mmHg, and the mean $PaO_2/FiO_2$ ratio was 130.3 before RM. The $PaO_2/FiO_2$ ratio increased by 45% after alveolar RM. The $PaO_2/FiO_2$ ratio reached a peak 60 minutes after alveolar RM. The Pa$CO_2$ increased by 51.9 mmHg after alveolar RM. The mean blood pressure was not affected by alveolar RM. There were no complications due to pressure injuries such as a pneumothorax, pneumomediastinum, and subcutaneous emphysema. Conclusion: In this study, alveolar RM using PCV improved the level of oxygenation in patients with an acute lung injury and acute respiratory distress syndrome. Moreover, there were no significant complications due to hemodynamic changes and pressure injuries. Therefore, alveolar RM using PCV can be applied easily and safely in clinical practice with lung protective strategy in early ALI and ARDS patients.

Assessment of Computed Tomographic Lung Density in Beagle and Shihtzu Dogs : Influence of Position and Positive End Expiratory Pressure (비글과 시츄견에서 호기말 양압에 따른 전산화 단층촬영상의 폐밀도의 평가)

  • Kim, Tae-Hun;Chang, Jin-Hwa;Yun, Seok-Ju;Yoon, Jung-Hee;Chang, Dong-Woo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2010
  • The objective of this study was to measure densities in various areas of the normal canine lung with computed tomography (CT) depending on influences of gravity and the degree of lung inflation and to determine optimal positions and positive end expiratory pressure of canine lung for CT scanning. In each eight normal Beagle and Shihtzu dogs, a respiratory breathhold maneuver without spontaenous breathing at different positive end expiratory pressure (PEEP) of 0 mmHg, 10 mmHg and 20 mmHg was applied with the position of right and left lateral recumbency, sternal recumbency, and dorsal recumbency and spiral-CT scans of the total lung were acquired. Slices were selected at three levels through the apex, middle and basal lung at the aortic arch, carina and just above the diaphragm and lung density was measured in the dorsal, ventral, and lateral portions of the peripheral lung field. Lung density in dependent areas was higher than in nondependent areas (p < 0.05) regardless of species, positions, anatomic locations at the PEEP of 0 mmHg and 10 mmHg. However, no significant difference of lung density was found at PEEP of 20 mmHg in both species except the dorsal recumbency in Shihtzu dogs. This density gradient in the dependent areas is strongly influenced by PEEP (p < 0.05). In the four positions on the CT gantry, the lung density at the dependent and nondependent location of the lung was greater at the aortic arch than at the base (p < 0.05). Lung density decreased on identical location according to increase of PEEP (p < 0.05). There was no significant difference between right and left lung density at sternal and dorsal recumbency and no significant difference of the dorsal, ventral, and lateral portions of lung density at the right and left recumbency under identical pressure. It is implied that during chest CT scan with 20 mmHg of positive end expiratory pressure with right or left lateral recumbency, canine lung density do not influenced by gravity or anatomic location.

Relationship of Compliance and Oxygen Transport in Experimental Acute Respiratory Failure during Positive End-Expiratory Pressure Ventilation (실험적 급성호흡부전에서 호기말양압에 의한 폐유순도와 산소운반의 변화 및 상관관계 - 호흡부전의 기전에 따른 차이 -)

  • Lee, Sang-Do;Yoon, Se-Jin;Lee, Bok-Hee;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.1
    • /
    • pp.6-15
    • /
    • 1993
  • Background: Positive end, expiratory pressure (PEEP) has become one of the standard therapies for adult respiratory distress syndrome (ARDS). Total static compliance has been proposed as a guide to determine the size of PEEP ('best PEEP') which is of unproven clinical benefit and remains controversial. Besides increasing functional residual capacity and thus improving oxygenation, PEEP stimulate prostacyclin secretion and was proposed for the treatment of acute pulmonary embolism. But little is known about the effect of PEEP on hemodynamic and gas exchange disturbances in acute pulmonary embolism. Methods: To study the validity of total static compliance as a predictor of 'best PEEP' in ARDS and acute pulmonary embolism, experimental ARDS was induced in mongrel dog with oleic acid and acute pulmonary embolism with autologous blood clot. Then hemodynamic and gas exchange parameters were measured with serial increment of PEEP. Results:In ARDS group, total static compliance and oxygen transport were maximal at 5 cm$H_2O$, and decreased thereafter (p<0.05). With increment of PEEP, arterial oxygen tension ($PaO_2$) and arterial carbon dioxide tension ($PaCO_2$) increased and cardiac output and physiological shunt decreased. In pulmonary embolism group, total static compliance, oxygen transport, physiological shunt and cardiac output decreased and $PaO_2$ and $PaCO_2$ increased with increment of PEEP (p<0.05). Comparing the change induced by increment of PEEP by 1 cm$H_2O$ in ARDS group with that in pulmonary embolism group, there was no significant difference between two groups except cardiac output which decreased more in pulmonary embolism group (p<0.05). In ARDS group, oxygen transport and total static compliance increased after PEEP application, and total static compliance was maximal at the PEEP level where oxygen transport was maximal. However in pulmonary embolism group, oxygen transport and total static compliance decreased after application of PEEP. There was significant correlation between change of total static compliance and change of oxygen transport in both groups. Conclusion: In both ARDS and acute pulmonary embolism, it can be concluded that total static compliance is useful as a predictor of 'best PEEP'.

  • PDF

Acute Respiratory Distress Syndrome in Respiratory Intensive Care Unit (호흡기계 중환자실에서 치료 관리된 급성호흡곤란증후군의 임상특성)

  • Moon, Seung-Hyug;Song, Sang-Hoon;Jung, Ho-Seuk;Yeun, Dong-Jin;Uh, Su-Tack;Kim, Yong-Hoon;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1252-1264
    • /
    • 1998
  • Background : Patients with established ARDS have a mortality rate that exceeds 50 percent despite of intensive care including artificial ventilation modality, Mortality has been associated with sepsis and organ failure preceding or following ARDS ; APACHE II score ; old age and predisposing factors. Revised ventilator strategy over last 10 years especially at ARDS appeared to improve the mortality of it. We retrospectively investigated 40 ARDS patients of respiratory-care unit to examine how these factors influence outcome. Methods : A retrospective investigation of 40 ARDS patients in respiratory-care unit with ventilator management over 46 months was performed. We investigated the clinical characteristics such as a risk factor, cause of death and mortality, and also parameters such as APACHE II score, number of organ dysfunction, and hypoxia score (HS, $PaO_2/FIO_2$) at day 1, 3, 7 of severe acute lung injury, and simultaneously the PEEP level and tidal volume. Results : Clinical conditions associated with ARDS were sepsis 50%, pneumonia 30%, aspiration pneumonia 20%, and mortality rate based on the etiology of ARDS was sepsis 50%, pneumonia 67%(p<0.01 vs sepsis), aspiration pneumonia 38%. Overall mortality rate was 60%. In 28 day-nonsurvivors, leading cause of death was severe sepsis(42.9%) followed by MOF(28.6%), respiratory failure(19.1 %), and others(9.5%). There were no differences in variables of age, sex, APACHE II score, HS, and numbers of organ dysfunction at day 1 of ARDS between 28-days survivor and nonsurvivors. In view of categorized variables of age(>70), APACHE II score(>26), HS(<150) at day 1 of ARDS, there were significant differences between 28-days survivor and nonsurvivors(p<0.05). After day 1 of ARDS, the survivors have improved their APACHE II score, HS, numbers of organ dysfunction over the first 3d to 7d, but nonsurvivors did not improve over a seven-day course. There were significant differences in APACHE II score and numbers of organ dysfunction of day 3, 7 of ARDS, and HS of day 7 of ARDS between survivors and nonsurvivors(p<0.05). Fatality rate of ARDS has been declined from 68% to less than 40% between 1995 and 1998. There were no differences in APACHE II score, HS, numbers of organ dysfunction, old age at presentation of ARDS. In last years, mean PEEP level was significantly higher and mean tidal volume was significantly lower than previous years during seven days of ARDS(p<0.01). Conclusions : Improvement of HS, APACHE II score, organ dysfunction over the first 3d to 7d is associated with increased survival Decline in ARDS fatality rates between 1995 and 1998 seems that this trend must be attributed to improved supportive therapy including at least high PEEP instead of conventional-least PEEP approach in ventilator management of acute respiratory distress syndrome.

  • PDF

Difference of Short Term Survival in Patients with ARDS According to Responsiveness to Alveolar Recruitment (급성호흡곤란증후군 환자에서 폐포모집술의 반응에 따른 초기 예후의 차이)

  • Kim, Ho Cheol;Cho, Dae Hyun;Kang, Gyoung Woo;Park, Dong Jun;Lee, Jong Deok;Hwang, Young Sil
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.3
    • /
    • pp.280-288
    • /
    • 2004
  • Background : Lung protective strategies, using low tidal volume in ARDS, improve survival rate in ARDS. However, low tidal volume ventilation may promote alveolar de-recruitment. Therefore, alveolar recruitment is necessary to maintain arterial oxygenation and to prevent repetitive opening and closure of collapsed alveoli in lung protective strategies. There has been a recent report describing improvement in arterial oxygenation with use of recruitment maneuver. However, impact of recruitment on outcome of ARDS is unknown. We evaluated whether short-term survival difference existed in patients with ARDS, who were performed alveolar recruitment maneuver(ARM) and prone position, according to response of alveolar recruitment or not. Methods : All patients who were diagnosed with ADRS and received mechanical ventilation were included. ARM were sustained inflation($35-45cmH_2O$ CPAP for 30-40 sec.) or increasing level of PEEP. If these methods were ineffective, alveolar recruitment with prone position was done for at least 10 hours. $P_aO_2/FiO_2$(P/F) ratio was determined before and at 0.5 and 2 hours after ARM. We defined a responder if the P/F ratio was increased over 50% of baseline value. We compared 10-days and 30-days survival rate between responders and non-responders. Results : 20 patients(M:F=12:8, $63{\pm}14age$) were included. Among them, 12 patients were responders and 8 patients were non-responders. In responders, P/F ratio was increased from $92{\pm}25mmHg$ to $244{\pm}85mmHg$. In non-responders, P/F ratio increased from $138{\pm}37mmHg$ to $163{\pm}60mmHg$. Among non-responders, P/F ratio was improved over 50% in 2 patients after prone position. Overall, 14 patients were responders after ARM and prone position. The 10-days and 30-days survival rate in responders was significantly higher than in non-responders(86%, 57% in responders and 33%, 0% in non-responders)(p<0.05). There was no significant difference between responders and non-responders in age($71{\pm}11$, $60{\pm}14$), lung injury score($2.8{\pm}0.2$, $2.9{\pm}0.45$), simplified acute physiology score(SAPS) II ($35{\pm}4.6$, $34{\pm}5.7$), positive end-positive pressure level($15.6{\pm}1.9cmH_2O$, $14.5{\pm}2.1cmH_2O$). Conclusion : ARM may improve arterial oxygenation in some patients with ARDS. These responders in patients with ARDS showed significant higher 10-days and 30-days survival rate than non-responders patients with alveolar recruitment.