• Title/Summary/Keyword: 형태 패턴 인식

Search Result 280, Processing Time 0.029 seconds

A Study on the Feasibility of Self-Organizing Net for the Pattern Recognition (패턴인식을 위한 자율조직망의 적용가능성에 관한 연구)

  • 정은호;김진구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.5
    • /
    • pp.403-412
    • /
    • 1991
  • This paper proposes a type of self organizing neural network which recognizes arbitrary symbols as well as numerical or alphabetic characters. The proposed algorithm autonomically organizes and classifies similar patterns on the basis of the distribution types of characteristics in the input images. Thus it can be appliced for the recognition of arbitrary images when it is difficult to establish a learning rule. It performs a stale recognition process with in the limit of the memory capacity. The cheme was applied and tested to 50 different image patterns with increased noise level up to 44%(SNR 2dB). The implementation results demonstrate that the proposed algorithm successfully recognizes the image patterns changed due to the various noise levels and thus proves excellent antinoise characteristics.

  • PDF

A study of speaker dependent speech recognition using neural network (신경회로망을 이용한 화자종속 음성인식 성능에 관한 연구)

  • 윤지원;이종수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.153-156
    • /
    • 2003
  • 본 연구는 화자종속 소어휘 음성인식의 성능을 개선하는 데 그 목적이 있다. 인식에 사용될 음성의 특징을 얻기 위해 Winer 필터와 LPC&Cepstrum을 이용하여 프레임 당 12차 패턴을 추출하였다. 추출된 특징패턴을 인식하는 인식부는 특히 소어휘 음성인식에 우수한 성능을 보이는 기존의 역전파 신경회로망(Backpropagation Neural Network)에 인식율 개선을 위하여 퍼지추론시스템을 결합한 형태로 구현되었다. 실험결과 신경망만을 사용한 경우에 비하여 인식율이 향상됨을 연구하였다.

  • PDF

기술현황분석 - EBP 알고리즘을 이용한 부분방전 패턴인식 기술 개발에 관한 연구

  • Jeong, Gyeong-Yeol;Lee, Hu-Rak;Han, Jeong-Eun;Park, Jeong-Tae;Jang, Gyeong-Seon;Kim, Yong-Sik
    • 기계와재료
    • /
    • v.21 no.3
    • /
    • pp.62-73
    • /
    • 2009
  • 전력기기에서 발생하는 부분방전을 정확히 측정하고 이를 올바르게 해석하는 작업은 신뢰성 있는 진단법을 개발하고 이를 현장에 적용하는데 있어 대단히 중요하다. 측정된 고주파 데이터를 패턴 분석이 가능한 형태로 가공하는 전처리 과정을 수행하고, 가공된 데이터를 패턴인식을 통하여 기존의 각 노이즈 및 부분방전 패턴과 비교하여 실제 측정된 데이터가 어떤 부분방전 패턴인지 판단한다. 패턴 인식 처리 방법으로는 컴퓨터 분야 신경회로망의 BP 알고리즘과 SOM 알고리즘이 널리 사용되고 있으며 본 연구에서는 TF-MAP, PRPDA, EBP 알고리즘을 이용하여 부분방전 패턴인식 기술 개발에 관한 연구를 수행하였다.

  • PDF

Automatic Recognition of Sentence-final Intonatio Patterns for Korean Predicates (한국어 서술어의 문장만 위치에서의 억양패턴에 대한 자동인식)

  • 이기영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.131-134
    • /
    • 1995
  • 최근, 문장단위의 음성을 인식할 수 있는 시스템을 개발하는 단계에 접어들면서 자발적인 발성음성의 인식 또는 음성언어 이해의 차원을 위한 시스템의 개발을 위해 운율특징을 이용하는 연구가 요구되고 있으나, 지금까지 개발되어온 음성이식시스템은 주로 독립단어의 인식수준에 머물고있기 때문에 운율을 이용하고자 하는 연구가 상대적으로 미흡한 수준에 있다. 본 연구에서? 나국어의 중의성 문장에서 서술어 부분을 세그멘트하고 이 부분의 억양패턴을 자동인식하여 중의성 문장이 서술형, 의문형, 명령형, 권유형인지를 파악하므로써 인식시스템에서 억양패턴을 이용할 수 있는 가능성을 제시하였으며, 서술형 문장음서으이 서술어 부분의 억양변황에 의해 의문형, 명령형, 권유형 무장으로 변환시키므로써 서술어 부분의 억양패턴에 따라 문장의 형태가 구분될 수 있음을 확인하였다.

  • PDF

Two Dimensional Barcode Recognition in Mobile Android Environment (모바일 안드로이드 환경에서의 이차원 바코드 인식)

  • Cho, Hey-Guen;Kim, In-Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.584-587
    • /
    • 2010
  • 이차원 바코드는 인식이 편리하고 영상의 변이나 손실에 강인하기 때문에 널리 사용되고 있다. 본 논문에서는 모바일 장치에서 카메라로 촬영한 영상으로부터 이차원 바코드의 한 종류인 데이터매트릭스를 검출하고 인식하는 방법을 소개한다. 모바일 안드로이드 환경에서 빠른 속도로 검출 및 인식 과정을 수행하기 위해 JNI를 이용하여 C로 기능을 구현하였다. 먼저, 이차원 영상을 이진화한 후 연결 성분 탐색을 통해 바코드 후보영역을 추출한다. 그리고 직선을 검출하여 데이터매트릭스의 주요소인 L 인식 패턴과 타이밍 패턴을 찾는다. 각 패턴을 이용하여 바코드 영역의 꼭지점을 찾아낸 후, 회전이나 기울어짐을 정규화하여 정사각형 형태로 교정한다. 그 후, 타이밍 패턴을 기준으로 데이터 영역을 인식한다.

A Study on the Pattern Recognition based Distance Protective Relaying Scheme in Power System (전력계통의 패턴인식형 거리계전기법에 관한 연구)

  • 이복구;윤석무;박철원;신명철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.9-20
    • /
    • 1998
  • In this paper, a new distance relaying scheme is proposed. Artificial neural networks are applied to the distance relaying system composed of pattern recognition based. The proposed distance relaying scheme has two blocks of pattern recognition stages to estimate the fundamental frequency and to classify the fault types. In the first block, a filtering method using neural networks called a neural networks mapping filter(NMF) is presented to efficiently extract the features. And in the sec'ond block, the estimator called neural networks fault pattern estimator(NFPE) is also presented to classify the fault types by the extracted effective features obtained from NMF. Each block of these applied schemes is trained by back-propagation algorithm of multilayer perceptron and show the fast and accurate pattern recognition by ability of multilayer neural networks. The test result of this approach are obtained the good performance from the fault transient wave signals of EMTP(e1ectromagnetic transients program) in the various fault conditions of power systems.

  • PDF

A Study on Design of Cataloging Expert System (패턴인식기법들 이용한 편목전문가시스템 설계)

  • 김현희
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1994.12a
    • /
    • pp.143-146
    • /
    • 1994
  • 본 연구에서는 표제면과 판권지의 서지요소의 레이아웃 특성과 구문적 특성을 이용하여 서지요소의 종류를 패턴인식 지식베이스와 전거화일들을 이용하여 자동 인지하고 인지된 서지요소를 한국문헌자동화목록형식(KORMARC)과 한국문헌자동화목록법(KORMARC) 기술규칙에 기초하여 KORMARC 형태로 출력해 주는 편목전문가시스템을 구축하였다.

  • PDF

Adaptive SEJONG-NET (적응 학습 능력을 가진 SEJONG-NET)

  • Park, Hye-Young;Lee, Yill-Byung
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.164-168
    • /
    • 1995
  • SEJONG-NET은 시각 문자패턴의 인식 과정을 설명 할 수 있는 적절한 패러다임을 제공하기 위해 척추동물의 시신경계 구조와 기능을 모방하여 만든 문자인식 모형이다. 초기에는 온라인 한글 인식을 위하여 설계되었으며, 이후 다양한 문자 집합이나 오프라인 한글 문자를 위한 모뎀들이 개발되었다. 현재까지 개발된 여러 SEJONG-NET 모델이 가지고 있는 문제점은 정직성이라고 할 수 있다. 즉, 설계 초기에 고려한 인식 대상 문자 집합과 문자 패턴에 대해서만 인식이 가능하고, 변형된 패턴을 기존의 패턴으로 근사화하여 해석하거나 새로운 패턴에 대하여 그것을 추가 학습하는 것이 불가능하다. 따라서 본 논문은 SEJONG-NET의 이러한 제약점을 해결하여 한글 인식 문제에 일반적으로 적용될 수 있도록 개선하는 것을 목적으로 한다. 이를 위해 상위층에서는 인간이 가지고 있는 문자에 대한 구조적인 지식을 표현하고 학습을 통해 추가적으로 습득할 수 있는 형태로 구현하였고, 하위층에서는 상위층에서 쓰이는 구조적인 지식을 표현하는데 적합한 특징을 추출해 낼 수 있도록 구현하였다. 특히 하위층에서는 인간의 초기 시각 피질에서 감지되는 특징들을 추출하도록 구현하여 사용되는 특징이 일반성을 가질 수 있도록 하였다. 이러한 방법을 기반으로 하여 본 논문에서는 변형된 패턴에 대한 적응 학습 능력을 가지며 인지과학적인 사실에 보다 충실하도록 개선된, 온라인 한글 인식을 위한 SEJONG-NET 모델을 제안한다.

  • PDF

A Multiple Classifier System based on Dynamic Classifier Selection having Local Property (지역적 특성을 갖는 동적 선택 방법에 기반한 다중 인식기 시스템)

  • 송혜정;김백섭
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.339-346
    • /
    • 2003
  • This paper proposes a multiple classifier system having massive micro classifiers. The micro classifiers are trained by using a local set of training patterns. The k nearest neighboring training patterns of one training pattern comprise the local region for training a micro classifier. Each training pattern is incorporated with one or more micro classifiers. Two types of micro classifiers are adapted in this paper. SVM with linear kernel and SVM with RBF kernel. Classification is done by selecting the best micro classifier among the micro classifiers in vicinity of incoming test pattern. To measure the goodness of each micro classifier, the weighted sum of correctly classified training patterns in vicinity of the test pattern is used. Experiments have been done on Elena database. Results show that the proposed method gives better classification accuracy than any conventional classifiers like SVM, k-NN and the conventional classifier combination/selection scheme.

Dynamic Hand Gesture Recognition Using a CNN Model with 3D Receptive Fields (3 차원 수용영역 구조의 CNN 모델을 이용한 동적 수신호 인식 기법)

  • Park, Jin-Hee;Lee, Joseph S.;Kim, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.459-462
    • /
    • 2007
  • 본 연구에서는 동적 수신호 인식문제를 위하여 CNN 모델을 사용한 특징추출 기법과, FMM 신경망을 사용한 특징 분석 기법을 상호 결합한 형태의 패턴 인식 모델을 제안한다. 수신호 인식을 위하여 영상패턴에서 대상물의 움직임 정보에 기초한 3 차원 형식의 데이터 표현 기법과, 이로부터 인식을 위한 특징추출 기법을 제시한다. 특징추출 모듈에서는 3 차원으로 확장된 구조의 수용영역을 고려한 CNN 모델을 제안하며, 이로부터 학습패턴에서 특징점의 공간적 변이에 대한 영향을 최소화할 수 있음을 고찰한다. 또한 인식효율의 개선을 위하여 방대한 양의 특징집합으로부터 효과적인 특징을 선별하기 위한 방법론으로서 WFMM 모델 기반의 특징분석 기법을 정의하고 이로부터 선별된 특징을 사용하는 인식 기법을 소개한다.