• Title/Summary/Keyword: 형태식별

Search Result 662, Processing Time 0.029 seconds

Identifiers Recognition of Container Image Using Morphological Characteristic and FCM-based Fuzzy RBF Networks (형태학적 특성과 FCM 기반 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식)

  • Kim, Tae-Hyung;Soung, Won-Goo;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.252-257
    • /
    • 2007
  • 우리나라의 항만은 수 출입화물의 99.5%를 처리하며, 육로 및 철도 수송 물동량의 기종점 역할을 수행하는 중요한 곳으로서 항만 물동량의 신속한 처리와 자동화 시스템에 의한 비용절감은 엄청난 효과를 가져온다. 따라서 본 논문에서는 항만에서 취급하는 컨테이너를 자동으로 식별할 수 있는 자동화 방법을 제안한다. 실제 컨테이너 영상을 그레이 영상으로 변환한 후, 프리윗 마스크(Prewitt-Mask)를 적용하여 윤곽선을 추출하고 컨테이너를 식별할 수 있는 개별 식별자의 형태학적 특징 정보를 이용하여 식별자 후보영역을 검출한다. 검출된 식별자 후보영역은 개별 식별자 영역외에 잡음 영역이 포함되어 있으므로 4방향 윤곽선 추적 알고리즘과 Grassfire 알고리즘을 적용하여 잡음을 제거하고 개별 식별자들을 각각 객체화한다. 잡음이 제거된 식별자 후보 영역에서 객체화 한 개별 식별자는 컨테이너 식별을 위해 FCM 기반 퍼지 RBF 네트워크를 적용하여 인식한다. 본 논문에서 제안한 컨테이너 식별자 인식 방법의 성능을 평가하기 위해 실제 컨테이너 영상 300장을 대상으로 실험한 결과, 기존의 방법보다 인식 성능이 개선되었음을 확인할 수 있었다.

  • PDF

Identifiers Extraction of Container Image using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 컨테이너 영상의 식별자 추출)

  • 주이환;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.238-242
    • /
    • 2004
  • 운송 컨테이너의 식별자를 추출하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 각각 이용하여 개별 식별자를 추출한다. 실제 컨테이너 영상을 대상으로 실험 결과, 제안된 컨테이너 식별자 추출 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 확인하였다.

  • PDF

Design and Implementation of a Digital Contents Service System based on the Identification System (식별체계기반의 전자원문 연계시스템 설계 및 구현)

  • Lee, Sang-Hwan;Sin, Dong-Goo;Kim, Jae-Soo;Choi, Jin-Young;Jeong, Taek-Yeong
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.3
    • /
    • pp.15-29
    • /
    • 2004
  • With the rapid growth of information technology and the internet. the physical contents are transformed into digital contents at a fast rate. With the change. accessing the digital contents, toe service methods and the identifier used for the digital contents are not systematic and limited for use. The DOI identifier system used for the URN is also limited to academic journals or magazines and are not adequately applicable for non-academic journal or digital contents. Therefore. we have developed a unique identifier based on the analysis made on the system adopted by foreign digital contents service institutes. two types of academic journals 3 types of non-academic journals owned by KISTI that can be adopted by non-academic journals. The identifier is to be used to design and implement a digital contents service system.

A study on intra-pulse modulation recognition using fearture parameters (특징인자를 활용한 펄스 내 변조 형태 식별방법에 관한 연구)

  • Yu, KiHun;Han, JinWoo;Park, ByungKoo;Lee, DongWon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.754-756
    • /
    • 2013
  • The modern Electronic Warfare Receivers are required to the current radar technologies like the Low Probability of Intercept(LPI) radars to avoid detection. LPI radars have features of intra-pulse modulation differ from existing radar signals. This features require counterworks such as signal confirmation and identification. Hence this paper presents a study on intra-pulse modulation recognition. The proposed method automatically recognizes intra-pulse modulation types such as LFM and NLFM using classifiers extracted from the features of each intra-pulse modulation. Several simulations are also conducted and the simulation results indicate the performance of the given method.

  • PDF

Container Identifier Recognition Using Morphological Features and FCM-Based Fuzzy RBF Network (형태학적 특성과 FCM 기반 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식)

  • Kim, Kwang-Baek;Kim, Young-Ju;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1162-1169
    • /
    • 2007
  • In this paper, we proposed a container identifier recognition method for containers used in harbors. After converting a real container image to a gray image, edges are detected from the gray image applying Prewitt mask and candidate identifier area is extracted using morphological features of individual identifier for identifying containers. Because noises are included in the extracted candidate identifier area, noises are eliminated and each identifier is separated using 4-directional edge tracking algorithm and Grassfire algorithm. Each identifier in the noise-free candidate identifier area is recognized using FCM-based row RBF network for discriminating containers. We used 300 real container images for experiment to evaluate the performance of the proposed method, and we could verify the proposed method is better than a conventional method.

The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Enhanced Neural Networks (윤곽선 추적과 개선된 신경망을 이용한 운송 컨테이너 영상의 식별자 인식)

  • 이혜현;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.235-239
    • /
    • 2002
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다 된 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보를 이용하여 수직 블록과 수평 블록을 추출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 이용하여 개별 식별자를 추출한다. 컨테이너의 개별 식별자 인식은 ART1을 개선하여 지도 학습 방법과 결합한 개선된 신경망을 제안하여 적용한다. 실험 결과에서는 제안된 컨테이너 식별자 추출 린 인식 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 보인다.

  • PDF

퍼지 추론과 개선된 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식

  • 주이환;김재용;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.195-202
    • /
    • 2004
  • 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화 한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자의 인식은 개선된 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었고 기존의 퍼지 RBF 네트워크 보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 우수함을 확인하였다.

  • PDF

A Study on Identifier Extraction from Shipping Container Image by Using Fuzzy Binarization and Contour Tracking Algorithm (퍼지 이진화와 윤곽선 추적 알고리즘을 이용한 운송 컨데이너 영상의 식별자 추출에 관한 연구)

  • 윤형근;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.490-494
    • /
    • 2003
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, Canny 마스크가 적용된 영상에서 수직·수평 히스토그램을 적용하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역을 삼각형 타입의 퍼지 이진화 방법을 적용하여 이진화하고 이진화된 컨테이너 식별자 영역을 윤곽선 추적 알고리즘으로 개별 식별자를 추출한다. 제안된 방법의 성능을 평가하기 위하여 실제 컨테이너 영상에 적용한 결과, 기존의 방법보다 컨테이너의 식별자 추출에서 우수한 성능이 있음을 확인하였다.

  • PDF

Case study on the possibility of Tracking at the Circuit Breaker after starting fire (화재발생 이후 분전반 차단기에서의 트래킹현상 진행 가능성에 대한 사례연구)

  • Park, Y.G.;Lee, S.H.;Lee, S.J.;Park, J.T.;Song, H.L.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • 본 논문은 화재발생 이후에 화재현장의 조건에 따라 분전반의 주차단기 전원측 단자에서의 트래킹 현상 진행 가능성에 대하여, 화재현장 조사사례를 들어 고찰하였다. 화재현장 조사과정에서 분전반의 주차단기 전원측 단자에서 트래킹 형태가 식별됨에도 불구하고 그 부하측에서 전기적인 특이점이 식별되는 경우에는, 단순히 트래킹 형태가 식별되는 점만으로 발화원인을 판정하는 자세를 지양하고, 구체적인 연소형태를 검토하여 발화개소, 연소확대 경로 등의 해석 및 전체적인 전기계통의 고찰을 통하여, 분전반 주차단기에서의 발화원인 등을 판정해야되며, 또한, 화재현장의 정밀조사 없이 분전반 및 차단기의 조사와 해석만으로는 발화여부 또는 발화원인에 대하여 논단하는 것이 어렵다는 결론을 도출하였다.

  • PDF

The Identifier Recognition from Shipping Container Image by Using The Enhanced Self-Organized Supervised Learning Algorithm (개선된 자가생성 지도학습 알고리즘을 이용한 컨테이너 식별자 연식)

  • 이혜현;김태경;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.149-154
    • /
    • 2002
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 에지 추출 기법을 이용하여 컨테이너의 식별자 영역을 추출하고 추출된 컨테이너 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 결합하여 개별 식별자를 추출한다. 추출된 컨테이너 개별 식별자 인식은 ART1을 수정하여 지도 학습 방법과 결합한 개선된 자가생성 지도학습 알고리즘을 제안하여 적용한다. 실험결과에서는 제안된 컨테이너 식별자 추출 및 인식 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 보인다.

  • PDF