• 제목/요약/키워드: 형상의 해석적 해

검색결과 222건 처리시간 0.02초

편백(扁栢)의 수간성장(樹幹成長)에 관(關)한 해석적(解析的) 연구(硏究) (An Analytical Study on Stem Growth of Chamaecyparis obtusa)

  • 안종만;이광남
    • 한국산림과학회지
    • /
    • 제77권4호
    • /
    • pp.429-444
    • /
    • 1988
  • 편백(扁栢) (Chamaecyparis obtusa)은 1924년(年) 일본(日本)에서 도입(導入)된 후(後) 한국(韓國) 남부지방(南部地方)의 주요조림종(主要造林種)으로 식재(植栽)되고 있다. 그러나 현존(現存)하는 편백림(扁栢林)의 대부분(大部分) 유령림(幼令林)에 속(屬)하고 있으며 임목(林木)의 다각적(多角的) 용도(用途) 개발(開發)이라는 최근(最近)의 추세(趨勢) 고려(考慮)할 때, 합리적(合理的)인 경영관리(經營管理)에 필요(必要)한 종합적(綜合的)인 정보구명(情報究明)이 시급(時急)한 과제(課題)라고 할 수 있다. 이러한 관점(觀點)에서 전남(全南) 장성군(長成郡) 삼서면(三西面) 식재(植栽)된 23년생(年生) 편백림(扁栢林)을 대상(對象)으로 83본(本) 표본목(標本木)을 선정대목(選定代木)하여 각종(各種) 수간장성인자(樹幹長成因子)들을 측정(測定)한 후(後) 정준상관분석법(正準相關分析法), 주성분분석법(主成分分析法) 및 인자분석법(因子分析法)을 적용(適用)하여 성장(成長) 특성(特性), 성장인자간(成長因子間)의 관계(關係), 잠재적(潛在的) 및 종합적(綜合的) 정보구명(情報究明)을 위하여 조사분석(調査分析)한 결과(結果)를 요약(要約)하면, 간재적(幹材積)과 질적성장인자(質的成長因子)의 정준상관분석(正準相關分析)에서 정준상관계수(正準相關係數) $0.988^{**}$이며, 정준변량(定準變量) 계수(系數)에서 비대성장인자(肥大成長因子)에서는 흉고직경(胸高直徑), 상장성인자(上長成因子)에서는 수고(樹高)가 유력(有力)한 인자(因子)로 밝혀 졌으며, 흉고직경(胸高直徑)과 수고(樹高)를 1조(組)로 선형(線形) 종합(綜合)한 정준변량(正準變量)과 간재적간(幹材積間)의 상관(相關)을 분석(分析)한 결과(結果)는 간재적((幹材積)에 대한 영향력(影響力)은 흉고직경(胸高直徑)이 수고(樹高)에 비(比)하여 높았다. 12개(個)의 수간(樹幹) 제성장인자(諸成長因子)들에 대(對)한 주성분(主成分) 분석결과(分析結果)에서 설정(設定)된 유효목표(有效目標) 85.00%에 합당(合當)하도록 채택(採擇)된 제(第)1~(第)2 주성분(主成分)까지의 누적기여율(累積奇與率)은 88.16%이며, 제(第)1, 제(第)2 주성분(主成分)은 각각(各各) "크기인자(因子)", "형상인자(形狀因子)"로 해석(解釋)되었다. 유효주성분(有效主成分) 각변량(各變量)에 대한 기여율(奇與率)은 수관직경(樹冠直徑), 지하고(枝下高) 및 망고(望高)를 제외(除外)한 모든 변량(變量) 정보(情報)가 87.00% 이상(以上)을 설명(說明)해 주었다. 상관행렬(相觀行列) 대각선요소(對角線要素)를 SMC로 하여 얻어진 고유치(固有値) 의(衣)해서 공통인자(共通因子)를 2개(個)로 정하였으며 $f^*_1$은 수간(樹幹) 비대성장계(肥大成長系)의 $f^*_1$은 상장성장수(上長成長系)의 형질인자(形質因子)의 잠재적인자(潛在的因子)로 해석(解析)되었다. 각종성장인자(各種成長因子)의 내재현상(內在現像)은 지하고(枝下高), 수관직경(樹冠直徑)을 제외(除外)한 공통성(共通性)이 78.62~98.30%의 높은 설명력(說明力)을 가진다. 공시목(供試木) 83본(本)은 인자득점(因子得點)의 표준편차(標準偏差)(1)를 반경(半徑)으로 한 원내(員內)의 표준목(標準木)은 중간형(中間型)으로 그리고 제(第) 1, 2, 3, 4 상한별(象限別)의 수간형질분류(樹幹形質分類)는 각각(各各) 비대(肥大), 수고성장(樹高成長)의 총합형(總合型), 세장형(細長型) 왜소형(矮小型) 및 단비형(短肥型) 등(等)의 5개유형(個類型) 분류(分類)할 수 있다.

  • PDF

공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (2)온실내 대기환경에 미치는 작물의 영향 분석을 위한 CFD 모델개발 - (Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (2) Development of CFD Model to Study the Effect of Tomato Plants on Internal Climate of Greenhouse -)

  • 이인복;윤남규;;;이성현;김경원;홍세운;성시흥
    • 생물환경조절학회지
    • /
    • 제15권4호
    • /
    • pp.296-305
    • /
    • 2006
  • 변화무쌍한 기상변화가 실험의 정확도에 미치는 영향을 최대한 줄일 수 있도록 강제환기식 온실에서 실험을 하였고, 또한 대체적으로 크지 않은 온실에서의 실험으로 인하여 CFD모델결과의 오차를 크게 줄일 수 있었다. CFD와 현장실험 결과를 비교하여 본 결과, 온실내 1m높이에서의 평균풍속이 각각 $0.42m{\cdot}s^{-1}$$0.39m{\cdot}s^{-1}$으로써 CFD의 지점별 오차 평균값은 7.7% 로 나타났다. Y8.5m 지점에서 가장 큰 오차가 발생하였는데, 최대 오차는 -53.8%로 나타났다. 이의 가장 큰 이유로는 온실 길이방향에서 중간지점인 Y8.5m에서 풍속이 매우 작았기 때문에 소숫점 2번째 자리의 차이라고 해도 큰 오차로 나타났다. 작물형상의 기하학적 복잡성이 매우 큰 것을 고려한다면 오차범위는 매우 양호한 것으로 판단된다. 온실내 1m높이에서 평균온도의 CFD 평균오차는 2.2%로 나타났고, 최대편차는 5.5%이었다. 온실내 바닥으로부터의 복사열 발생량의 차이로 인하여 온실내 동쪽 지역에 상대적으로 큰 오차가 발생하였다. 외기 상대습도가 44%일 때, CFD상대습도의 오차는 2.1%이었으며, 최대 오차는 -3.8%이었다. 식물군의 공기유동저항, 식물군의 수분 및 열평형 모델을 추가하여 보다 사실적인 CFD모델을 설계하였다. CFD 모델의 설계방법이 정립되었기 때문에, 추후에 온실내 다른 작물의 미기상 및 이의 온실내 기상에 미치는 영향 등을 정량적으로 분석할 수 있게 되었다. 또한 작물의 적정생육환경에 주요 대상이면서도 동시에 센서설치의 어려움 등으로 인하여 연구에 어려움이 많았던 작물군내 미기상을 연구할 수 있는 토대를 마련하였다.