• Title/Summary/Keyword: 형상생성함수

Search Result 75, Processing Time 0.023 seconds

Design Optimization of QTP-UAV Prop-Rotor Blade Using ModelCenter (ModelCenter를 이용한 QTP-UAV 프롭로터 블레이드 형상 최적설계)

  • Kang, Hee Jung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • Blade design optimization of QTP-UAV prop-rotor was conducted using ModelCenter(R). Performance efficiency of the blade in hover and forward flight were adopted as the multi-objective function. Required power and pitch link force applied to constraint in each flight mode and limited lower than the value of the baseline blade. Design variables of root chord length of the blade, taper ratio, twist slope, twist angle at 0.5R of the blade, anhedral angle, parabolic coefficient of a tip shape and location of airfoil were used to generate the blade planform. CAMRAD-II, the comprehensive analysis program of rotorcraft, was used for performance analysis of prop-rotor blade in design process. Performance of the optimized blade improved 1.6% of figure of merit in hover and 13.6% of propulsive efficiency in forward flight. Pitch link force also reduced approximately 30% less than that of the baseline blade.

3D face recognition based on radial basis function network (방사 기저 함수 신경망을 이용한 3차원 얼굴인식)

  • Yang, Uk-Il;Sohn, Kwang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.82-92
    • /
    • 2007
  • This paper describes a novel global shape (GS) feature based on radial basis function network (RBFN) and the extraction method of the proposed feature for 3D face recognition. RBFN is the weighted sum of RBfs, it well present the non-linearity of a facial shape using the linear combination of RBFs. It is the proposed facial feature that the weights of RBFN learned by the horizontal profiles of a face. RBFN based feature expresses the locality of the facial shape even if it is GS feature, and it reduces the feature complexity like existing global methods. And it also get the smoothing effect of the facial shape. Through the experiments, we get 94.7% using the proposed feature and hidden markov model (HMM) to match the features for 100 gallery set with those for 300 test set.

Modal Analysis of a Large Truss for Structural Integrity (건전성 평가를 위한 대형 트러스 구조물의 모드분석)

  • Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Dynamic characteristics of a structure, i.e., natural frequency and mode shape, have been widely using as an input data in the area of structural integrity or health monitoring which combined with the damage evaluation and structural system identification techniques. It is very difficult, however, to get those information by the conventional modal analysis method from large structures, such as the offshore structure or the long-span bridge, since the source of vibration is not available. In this paper, a method to obtain the frequencies and the mode shapes of a large span truss structure using only acceleration responses is studied. The calculation procedures to obtain acceleration responses and frequency response functions are provided utilizing a numerical model of the truss, and the process to extract natural frequencies and mode shapes from the modal analysis is cleary explained. The extracted mode shapes by proposed method are compared with those from eigenvalue analysis for the estimation of accuracy. The validity of the mode shapes is also demonstrated using an existing damage detection technique for the truss structure by simulated damage cases.

Classification and discrimination of excel radial charts using the statistical shape analysis (통계적 형상분석을 이용한 엑셀 방사형 차트의 분류와 판별)

  • Seungeon Lee;Jun Hong Kim;Yeonseok Choi;Yong-Seok Choi
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.73-86
    • /
    • 2024
  • A radial chart of Excel is very useful graphical method in delivering information for numerical data. However, it is not easy to discriminate or classify many individuals. In this case, after shaping each individual of a radial chart, we need to apply shape analysis. For a radial chart, since landmarks for shaping are formed as many as the number of variables representing the characteristics of the object, we consider a shape that connects them to a line. If the shape becomes complicated due to the large number of variables, it is difficult to easily grasp even if visualized using a radial chart. Principal component analysis (PCA) is performed on variables to create a visually effective shape. The classification table and classification rate are checked by applying the techniques of traditional discriminant analysis, support vector machine (SVM), and artificial neural network (ANN), before and after principal component analysis. In addition, the difference in discrimination between the two coordinates of generalized procrustes analysis (GPA) coordinates and Bookstein coordinates is compared. Bookstein coordinates are obtained by converting the position, rotation, and scale of the shape around the base landmarks, and show higher rate than GPA coordinates for the classification rate.

Development of Digital Leaf Authoring Tool for Virtual Landscape Production (가상 조경 생성을위한 디지털 잎 저작도구 개발)

  • Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • This study proposes a method of developing authoring tool that can easily and intuitively generate diverse digital leaves that compose virtual landscape. The main system of the proposed authoring tool consists of deformation method for the contour of leaf blade based on image warping, procedural modeling of leaf vein and visualization method based on mathematical model that expresses the color and brightness of leaves. First, the proposed authoring tool receives leaf input image and searches for contour information on the leaf blades. It then designs leaf blade deformation method that can generate diverse shapes of leaf blades in an intuitive structure using feature-based image warping. Based on the computed leaf blade contour, the system implements the generalized procedural modeling method suitable for the authoring tool that generates natural vein patterns appropriate for the leaf blade shape. Finally, the system applies visualization function that can express color and brightness of leaves and their changes over time using a mathematical model based on convolution sums of divisor functions. This paper provides texture support function so that the digital leaves that were generated using the proposed authoring tool can be used in a variety of three-dimensional digital contents field.

A Study on the Hull Form Design System on the Basis of the Associative Geometry Objects (연관성 형상객체에 기초한 선형설계 전산시스템에 관한 연구)

  • Young-Bok Choi;Kyu-Yeul Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.105-115
    • /
    • 1999
  • To develope the best optimized hull form, it has been generalized to evaluate the preliminary hull forms with the CFD tools in the initial stage of development and for this process it is needed to prepare various competent hull forms with high degree of fairness. In this paper, a modified shape variation method was developed to maintain the shape and fairness of parent hull form and the automatic update procedure was implemented on the basis of the association concept. It was shown that the hull form of the high quality in fairness and shape inherited from the parent hull form can be archived.

  • PDF

Compensation of Geometric Error by the Correction of Control Surface (제어곡면 수정에 의한 기하오차 보정)

  • Ko, Tae-Jo;Park, Sang-Shin;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF

Deterministic Pitch Tool Polishing Using Tool Influence Function (드레이퍼 방식 연마기에서의 툴 영향 함수 기법)

  • Yi, Hyun-Su;Yang, Ho-Soon;Lee, Yun-Woo;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.422-428
    • /
    • 2008
  • The pitch tool provides superior surface roughness compared to other types of polishing tool. However, because of difficulty in handling the pitch tool, pitch tool polishing has rarely been analysed, which led many craftsman to eliminate the pitch tool from their experiences. We found that it was possible to use a pitch tool in the well-determined material removal after the completion of computer simulation and experiment. We could simulate the TIF of the pitch tool with 79% accuracy. Also, after five successive simulations of polishing process on a 280 mm optical flat, the surface p-v error was found to be reduced from $1{\mu}m$ to 168 nm.

3D Human Shape Deformation using Deep Learning (딥러닝을 이용한 3차원 사람모델형상 변형)

  • Kim, DaeHee;Hwang, Bon-Woo;Lee, SeungWook;Kwak, Sooyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.19-27
    • /
    • 2020
  • Recently, rapid and accurate 3D models creation is required in various applications using virtual reality and augmented reality technology. In this paper, we propose an on-site learning based shape deformation method which transforms the clothed 3D human model into the shape of an input point cloud. The proposed algorithm consists of two main parts: one is pre-learning and the other is on-site learning. Each learning consists of encoder, template transformation and decoder network. The proposed network is learned by unsupervised method, which uses the Chamfer distance between the input point cloud form and the template vertices as the loss function. By performing on-site learning on the input point clouds during the inference process, the high accuracy of the inference results can be obtained and presented through experiments.

Image-based Modeling by Minimizing Projection Error of Primitive Edges (정형체의 투사 선분의 오차 최소화에 의한 영상기반 모델링)

  • Park Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.567-576
    • /
    • 2005
  • This paper proposes an image-based modeling method which recovers 3D models using projected line segments in multiple images. Using the method, a user obtains accurate 3D model data via several steps of simple manual works. The embedded nonlinear minimization technique in the model parameter estimation stage is based on the distances between the user provided image line segments and the projected line segments of primitives. We define an error using a finite line segment and thus increase accuracy in the model parameter estimation. The error is defined as the sum of differences between the observed image line segments provided by the user and the predicted image line segments which are computed using the current model parameters and camera parameters. The method is robust in a sense that it recovers 3D structures even from partially occluded objects and it does not be seriously affected by small measurement errors in the reconstruction process. This paper also describesexperimental results from real images and difficulties and tricks that are found while implementing the image-based modeler.