• Title/Summary/Keyword: 형변형

Search Result 2,173, Processing Time 0.03 seconds

Large Deformation Formulation of a Hypoelasto-plastic Constitutive Model for Soils (흙의 속도형식 탄소성구성모델에 대한 대변형도 정식화)

  • Oh, Se-Boong;Lee, Seung-Hyun;Kwon, Oh-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.277-286
    • /
    • 2003
  • A constitutive equation was implemented in order to model the behavior in overall ranges from small to large strains, which is based on anisotropic hardening rule and total stress concept. The constitutive model was implemented in ABAQUS code in which large deformation analysis can be performed accurately and efficiently. The formulation includes (1) finite strain plasticity on the basis of Jaumann stress rate, (2) implicit stress integration and (3) consistent tangent moduli. A large deformation analysis was performed with the constitutive model using ABAQUS program. In the analysis of an actual embankment, it was found that the proposed model was formulated accurately and efficiently.

Analysis of axisymmetric closed-die forging using UBET (UBET를 이용한 축대칭 형단조 해석)

  • 김동원;김헌영;신수정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.337-344
    • /
    • 1989
  • The upper bound elemental technique (UBET) is used to simulate the bulk flow characteristics in axisymmetric closed die forging process. Internal flow inside the cavity is predicted using a kinematically admissible velocity field that minimizes the rate of energy consumption. Application of the technique includes an assessment of the formation of flash and of degree of filling in rib-web type cavity using billets with various aspect rations. The technique considering bulging effect is performed in an incremental manner. The results of simulation show how it can be used for the prediction of forging load, metal flow, and free surface profile. The experiments are carried out with plasticine. There are good agreements in forging load and material flow in cavity between the simulation and experiment. The developed program using UBET can be effectively applied to the various forging problems.

Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea (장군봉지역 북부 소백산육괴의 고생대 변성퇴적암류에 대한 변형작용과 변성작용 사이의 상대적인 시간관계)

  • 강지훈;오세봉;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.190-206
    • /
    • 1998
  • The microstructures and time-relationship between deformation and growth of metamorphic minerals(metamorphism) of the Paleozoic metasedimentary rocks(Joseon Supergroup and Pyeongan Group) in the Janggunbong area at the central-south part in the North Sobaegsan Massif, Korea, have been analyzed in this paper. The first phase metamorphism (low-pressure type metamorphism), recognized as the crystallization of stack-type chloritoid and biotite and augen-type old andalusite, occurred under non-deformational condition before D1 deformation related to the formation of an E-W trending isocline-synclinal fold(Janggunbong fold) and associated its axial plane S1 foliation, and produced regional mineralogical zoning of E-W trend in the Paleozoic rocks. The second phase metamorphism(medium-pressure type metamorphism), related to the growth of staurolite and garnet porphyroblasts with straight or curved internal foliations(Si), occurred under non-deformational condition after D1 deformation related to the formation of E-W trending thrusts modifying the Janggunbong fold and during D2 deformation related to the formation of E-W trending Yecheon shear zone. This metamorphism also produced regional mineralogical zoning of E-W trend. After D2 deformation occurred the intrusion of Jurassic Chunyang granite and associated its contact metamorphism which crystallized patchy-type young andalusite and prismatic- or fibrous-type sillimanite and coarse-grained garnet. This metamorphism occurred under non-deformational condition before D3 deformation related to the formation of S3 crenulation cleavage and during early phase of D3 deformation, and formed narrow mineralogical zoning of N-S trend near Chunyang granite.

  • PDF

Igneous Activity and Geological Structure of the Ogcheon Metamorphic Zone in the Kyemyeongsan area, Chungju, Korea (충주 계명산지역 옥천변성대의 화성활동과 지질구조)

  • 강지훈;류충렬
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.151-165
    • /
    • 1997
  • The Kyemyeongsan area of Chungju in the NE part of the Ogcheon metamorphic zone, Koera, consists mainly of the Ogcheon Supergroup(Taehyangsan Quartzite, Hyangsanri Dolomite and Kyemyeogsan Formation) and the MeSozoic Chungju granite. The Kyemyeongsan Formation is composed mainly of metamorphic rocks of various grades derived from conglomeratic, basic, acidic, pelitic and psammitic rocks. The basic and acidic rocks show alternated or interfingered appearence, indicating that they were derived form bimodal type of magmatism in rift environment. Conglomeratic rocks overlie acidic volcanic rocks in geneal, but are underlain by both acidic plutonic and volcanic rocks. This indicaties that the acidic magmatism before the formation of conglomeratic rocks was different from that during or after the formation of conglomeratic rocks in its occurrence mode. The geological structure of the Ogcheon metamorphic zone in the Kyemyeongsan area, Chungju was formed at least by three phases of deormation. The first phase deformation(D1) formed a regional-scale sheath-type fold(F1) closed into the east. Its axial phane(S1) strikes NNW to NW and dips WSW to SW. The stetching lineation(L1), related to the sheath-type fold, plunges westward. The second phase deformation (D2) formed asymmetric fold(F2) of ESE-to SE-vergence with NNE to NE striking axial plane(S2) and $20~45^{\circ}/210~230^{\circ}$ plunging axis(L2). The F2 fold reoriented the original westward plunging L1 into northwestward plunging L1 in its lower limb(overturned limb). The third phase of deformation(D3) was recognized as chevron-type fold(F3) with $45^{\circ}/265$^{\circ}$ plunging axis. The F3 fold was formed by the compression of N-S direction, resulting in the reorientation of the original $20-45^{\circ}/210~230^{\circ}$ plunging L2 into mainly $35~45^{\circ}/260~280^{\circ}$ and subsidiarily $30~45^{\circ}/135~165^{\circ}$ plunging L2. After this deformation, open fold with NS striking and steeply E or W dipping axial plane is formed by the compression of E-W direction.

  • PDF

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

Evaluation of the Temperature Drop Effect and the Rutting Resistance of Moisture Retaining-Porous Asphalt Pavement Using Accelerated Pavement Testing (포장가속시험을 이용한 보수형 배수성 포장의 온도저감 효과 및 소성변형 저항특성 연구)

  • Kwak, Byoung-Seok;Suh, Young-Chan;Song, Chul-Young;Kim, Ju-Won
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.97-109
    • /
    • 2009
  • One of the main causes of asphalt rutting is high temperature of the pavement. Nevertheless, there has been few research on lowering the pavement temperature for reducing rutting. This study investigated the performance characteristics of moisture-retaining porous asphalt pavement, which is known to have a temperature reducing effect. The purpose of this study is to quantify the temperature reducing effect of moisture-retaining porous asphalt pavement and its effect of reducing rutting through Accelerated Pavement Testing(APT). Additionally, the possibility of reducing the thickness of the pavement in comparison to general dense grade pavement by analyzing structural layer coefficient of moisture retaining pavement. A total of three test sections consisting of two moisture-retaining porous asphalt pavement sections and one general dense-grade porous asphalt pavement section were constructed for this study. Heating and spraying of water were carried out in a regular cycle. The loading condition was 8.2 ton of wheel load, the tire pressure of $7.03kgf/cm^2$, and the contact area of $610cm^2$. The result of this experiment revealed that the temperature reducing effect of the pavement was about $6.6{\sim}7.9^{\circ}C$(average of $7.4^{\circ}C$) for the middle layer and $7.9{\sim}9.8^{\circ}C$(average of $8.8^{\circ}C$) for surface course, resulting in a rutting reduction of 26% at the pavement surface. Additionally, the structural layer coefficient of moisture retaining pavement measured from a laboratory test was 0.173, about 1.2 times that of general dense grade pavement. The general dense-grade porous asphalt pavement test section exhibited rutting at all layers of surface course, middle layer, and base layer, while the test sections of moisture-retaining porous asphalt pavement manifested rutting mostly at surface course only.

  • PDF