• Title/Summary/Keyword: 형광 관측 시스템

Search Result 8, Processing Time 0.02 seconds

Development of a real-time Analysis System of Microchip Fluorescence Images based on Server-Client (서버 클라이언트 기반의 실시간 마이크로칩 형광 이미지 분석 시스템 개발)

  • Cho, Migyung;Shim, Jaesool
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1239-1244
    • /
    • 2013
  • In the field of clinical medicine and research, the analysis of such as protein and DNA at the molecular level and even at the cell level are necessary for disease diagnosis and treatment. In many cases, a real time image of samples is needed for the accurate analysis and manipulation of samples since experimental samples are degenerated with time. In this research, a three-dimensional fluorescence microscope device was developed for taking images of protein and DNA inside a single cell and the server-client based image analysis system was made for an integrated management of the real-time images taken from the microscope device. The system consists of a fluorescent measurement device, the associated software and a client program on smartphone. The developed system allows doctors or experimental managers to receive and look at the real-time experimental images taken from the samples of patients anywhere in the emergency, to analyze results and to instantly diagnose the disease and to transfer the results to the patients. As a result, the system is able to be utilized in the implementation of ubiquitous health as well.

Measurement of hydrogen peroxide and methyl hydroperoxide in Yanbian, China (연변시 hydrogen peroxide와 methyl hydroperoxide 측정)

  • 지병수;김영미;이미혜
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.237-238
    • /
    • 2003
  • 과산화수소와 organic peroxide는 대류권내 광화학반응에서 생성되는 중요 부산물이다. 이들은 대류권내의 OH와 HO$_2$ 라디칼의 농도를 지시하여 대기의 산화도를 나타내는 지시자가 된다. 이 라디칼들은 $O_3$를 생성하는데 필수적인 성분이므로, 대류권내 광화학 반응을 이해하기 위해서는 과산화수소의 농도와 분포를 이해하는 것이 필수적이다. 대기중의 hydroperoxide는 유리코일 내에서 포집 용액에 의해 포집된 후 HPLC 시스템의 postcolumn reactor에서 효소와 반응하여 형광을 띠게 되고, 형광검출기에서 검출된다. 이 모든 과정은 자동화되어 과산화수소의 실시간 관측 및 연속관측이 가능하게 되었다. (중략)

  • PDF

초고에너지 우주선 관측을 위한 JEM-EUSO 프로젝트의 진행 현황

  • Im, Hui-Jin;Kim, Seok-Hwan;Kim, Sun-Uk;Park, Il-Heung;Yang, Jong-Man;Lee, Jik;Jeong, Ae-Ra
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.222.1-222.1
    • /
    • 2012
  • JEM-EUSO (Extreme Universe Space Observatory on-board the Japanese Experiment Module)는 국제우주정거장(International Space Station)의 일본 실험 모듈인 'KIBO'에 우주 망원경을 설치하여, 100 EeV이상의 초고에너지 우주선 관측을 수행함으로써, 초고에너지의 스펙트럼, 구성성분과 기원을 연구하는 국제공동연구 프로젝트이다. 구경 2.5 m로 60도의 광시야각을 가지는 대형 굴절 망원경을 통해서, 지구 대기에 우주선 shower로부터 발생한 형광 신호를 관측하려고 한다. 이 프로젝트는 2016~2017년에 발사되어, 5년 이상의 임무 수행을 목표로 하고 있으며, 그 전단계로 Prototype 시스템을 가지고 지상실험인 EUSO-TA와 고도 40 km에서 수행할 EUSO-Balloon실험을 준비하고 있다. 먼저, 망원경의 prototype을 2012년 12월쯤 미국 유타에 있는 Telescope Array(TA) 실험에 설치하여 우주선 또는 임의로 인가한 광원에 의해서 생성된 shower를 TA의 Fluorescence Detector와 함께 측정하여, 시스템 calibration과 더불어 지상에 검출된 우주선을 연구할 계획이다. 그 이듬해인 2013년 여름에는 Balloon에 망원경의 Engineering model을 실어서, 대기고도 40 km아래에서 우주선에 의해 생성되는 shower를 개발한 트리거 시스템을 통해서 검출하고, 대기권에 존재하는 UV background 광원들을 측정하여 우주선을 연구할 예정이다. 한국 그룹은 JEM-EUSO을 위해서 개발한 디지털 신호처리 및 트리거 장치의 제작 중에 있으며, 위의 실험들을 위해 망원경과 함께 조립하여 테스트를 수행할 계획이다.

  • PDF

Sun-induced Fluorescence Data: Case of the Rice Paddy Field in Naju (논벼에서 관측된 태양 유도 엽록소 형광 자료: 나주에서 2020년 6월 10일부터 10월 5일까지)

  • Ryu, Jae-Hyun;Jang, Seon Woong;Kim, Hyunki;Moon, Hyun-Dong;Sin, Seo-Ho;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.82-88
    • /
    • 2021
  • Sun-induced fluorescence (SIF) retrieval using remote sensing technique has been used in an effort to understand the photosynthetic efficiency and stress condition of vegetation. Although optical devices and SIF retrieval methodologies were established in order to retrieve SIF, the SIF measurements are domestically sparse. SIF data of paddy rice w as measured in Naju, South Korea from June 10, 2020 to October 5, 2020. The SIFs based red (O2A) and far-red (O2B) w ere retrieved using a spectral fitting method and an improved Fraunhofer line depth, and photosynthetically active radiation was also produced. In addition, the SIF data was filtered considering solar zenith angle, saturation conditions, the rapid and sudden change of solar irradiance, and sun glint. The provided SIF data can help to understand a SIF product and the filtering method of SIF data can contribute to producing high-quality SIF data.

Relationship between Sun-induced Chlorophyll Fluorescence and Gross Primary Production at Diurnal and Seasonal Scales, a Case Study in A Rice Paddy (벼논에서 관측된 태양유도 엽록소 형광물질과 총1차생산량의 일간 그리고 계절에 따른 관계에 대하여)

  • Yang, Kaige;Ryu, Youngryel;Kimm, Hyungsuk;Dechant, Benjamin;Jiang, Chongya;Hwang, Yorum;Kim, Jongmin;Kang, Minseok;Kim, Joon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2017.11a
    • /
    • pp.86-87
    • /
    • 2017
  • PDF

Single-Cell-Imaging-Based Analysis of Focal Adhesion Kinase Activity in Plasma Membrane Microdomains Under a Diverse Composition of Extracellular Matrix Proteins (다양한 ECM 조건하에서의 세포막 미세영역 부위 국소접착인산화효소 활성의 단일세포 이미징 기반 분석)

  • Choi, Gyu-Ho;Jang, Yoon-Kwan;Suh, Jung-Soo;Kim, Heon-Su;Ahn, Sang-Hyun;Han, Ki-Seok;Kim, Eunhye;Kim, Tae-Jin
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.148-154
    • /
    • 2022
  • Focal adhesion kinase (FAK) is known to regulate cell adhesion, migration, and mechanotransduction in focal adhesions (FAs). However, studies on how FAK activity is regulated in the plasma membrane microdomains according to the composition of extracellular matrix (ECM) proteins are still lacking. A genetically encoded fluorescence resonance energy transfer (FRET)-based biosensor can provide useful information on the activity of intracellular signals with high spatiotemporal resolution. In this study, we analyzed the FAK activities in lipid raft (detergent-resistant membrane) and non-lipid raft (non-detergent-resistant membrane) microdomains using FRET-based membrane targeting FAK biosensors (FAK-Lyn and FAK-KRas biosensors) under four different ECM protein compositions: glass, type 1 collagen, fibronectin, and laminin. Interestingly, FAK activity in response to laminin in a lipid raft microdomain was lower than that in other ECM conditions. Cells subjected to fibronectin showed higher FAK activity in a lipid raft microdomain than that in a non-lipid raft microdomain. Therefore, this study demonstrates that the FAK activity can be distinctively regulated according to the ECM type and the environment of the plasma membrane microdomains.

Effect of Partial Shading by Agrivoltaic Systems Panel on Electron Transport Rate and Non-photochemical Quenching of Crop (영농형 태양광 패널의 부분 차광 생육 환경이 작물 전자전달효율과 비광화학적 형광소멸에 미치는 영향)

  • Cho, Yuna;Kim, Hyunki;Jo, Euni;Oh, Dohyeok;Jeong, Hoejeong;Yoon, Changyong;An, Kyunam;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.100-107
    • /
    • 2021
  • An agrivoltaic system (AVS) is a system of innovation that comprises productions of photovoltaic power and agricultural crops on the same area. However, the decline in crop yield will be fatally occurred because the pigments of crop absorbs less light energy under AVS. In addtion, the photosynthetic capacity of crop grown under the partial shading of AVS is not well reported. In this study, the electron transport rate (ETR) and non-photochemical fluorescence quenching (NPQ) of soybean and rice under the AVS in Boseong and Naju was investigated using chlorophyll fluorescence measurement. The ETR value of soybean and rice under AVS were not significantly differed by location. It represents that the photophosphorylation rate of the crops is not critically different. It means that the decreases in total photosynthesis under AVS were mostly affected by the amount of light absorbed by leaves. Under AVS the photosynthesis of crops will be lower than field crops grown in open fields. This is because the crops under AVS observed higher NPQ, which means that the available energy cannot distribute to photophosphorylation reaction.

Development of Indocyanine Green and 5-Aminolevulinic Acid Detection System for Surgical Microscope (수술현미경용 다중형광 관측 시스템 연구)

  • Kim, Hong Rae;Lee, Hyun Min;Yoon, Woong Bae;Kim, Young Jae;Kim, Seok Ki;Yoo, Heon;Joo, Jae Young;Kim, Kwang Gi;Lee, Seung-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • Indocyanine green(ICG) and 5-aminolevulinic acid(5-ALA) have been widely used to mark blood vessels or tumors. However, fluorescent dye detection systems were designed to use one type of dyes only. In this study, we proposed a detection system capable of detecting Indocyanine green and 5-aminolevulinic acid. Multiple filters and light sources are integrated into a single system. In this study, we performed analysis of fluorescent dyes and configured a detection system. During the analysis, it was found that Indocyanine green and 5-aminolevulinic acid have the maximum intensity at $40{\mu}M$. We designed light source for fluorescent dyes and conducted compatibility test using a commercial surgical microscope. The fluorescent dye detection system was configured based on the experimental results. The developed system successfully detects Indocyanine green and 5-aminolevulinic acid. Therefore, more efficient surgical operations can be achieved using both fluorescent dyes at the same time. We expect that the developed system can increase the survival rate of patients.