• Title/Summary/Keyword: 협력적 필터링 기법

Search Result 53, Processing Time 0.032 seconds

A Collaborative Filtering Approach using User Profile (사용자 프로파일 정보를 고려한 협력 필터링)

  • Kim, Byung-Man;Lee, Kyung;Park, Chang-Seok;Kim, Si-Kwan;Kim, Ju-Yeon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.286-288
    • /
    • 2002
  • 엄청난 속도로 증가하고 있는 정보의 홍수 시대에서는 정보들을 선별하기 위하여 정보 필터링 기법이 필요하다. 정보 필터링은 내용 기반 방법과 협력에 의한 방법으로 분류할 수 있다. 내용 기반 기법에서는 내용에 기반을 두어 정보를 추출하는 반면 협력 기법은 대상이 되는 사용자에 대한 예측을 하기 위하여 다른 사람들의 의견들을 이용하게 된다. 본 논문에서는 기존 협력 필터링 방법의 문제점을 해결하기 위한 방법의 일환으로 내용 기반 기법과 협력 기법을 보다 유기적으로 결합시키는 연구를 수행하였다. 이를 위해 협력 필터링 틀을 그대로 유지하면서 사용자 프로파일을 효과적으로 이용하는 방법을 제안하였다. 또한, 본 논문에서 제시한 기법을 실험적으로 분석하고 기존의 필터링 기법과 비교함으로써 제시된 기법의 우수성을 보였다.

  • PDF

Comparison of Recommendation Techniques for Web-based Design Personalization Service (웹기반 개인화 디자인 서비스를 위한 효과적인 추천 기법의 비교 연구)

  • Seo, Jong-Hwan;Byun, Jae-Hyung;Lee, Kun-Pyo
    • Science of Emotion and Sensibility
    • /
    • v.9 no.spc3
    • /
    • pp.179-185
    • /
    • 2006
  • This study examines and compares various recommendation techniques which have been used successfully in other fields and seeks for opportunity to improve design personalization service more effectively. Throughout the literature study, several major recommendation techniques were identified, namely 'contents-based filtering', 'collaborative filtering', and 'demographic filtering'. In order for finding out relative advantages and disadvantages, a case study was carried out by applying different techniques. The result showed that in general, demographic filtering was evaluated least efficient among the techniques. Content-based filtering showed the best efficiency among them. Another significant finding was that the collaborative filtering had a better efficiency as the number of test subjects is increased. In conclusion, we suggest that design recommendation services can be improved by applying contents-based or collaborative filtering for better efficiency of recommendation. And, if the number of test subjects is large enough, it may be possible to remarkably improve the efficiency of design recommendation services by using collaborative filtering.

  • PDF

Personalized Recommender System Using Information Filtering (정보 필터링을 사용한 개인화된 추천시스템)

  • Kwak, Mi-Ra;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2807-2809
    • /
    • 2001
  • 본 논문에서는 웹기반 쇼핑몰에서 사용자들에게 새로운 상품을 추천하는 시스템을 제안한다. 추천시스템이란 사용자의 필요와 취향을 고려하여 그에게 적합한 새로운 상품이나 대신할만한 상품 등을 추천하는 시스템이다. 지금까지 제안된 대부분의 추천시스템들은 협력적인 필터링 기법을 쓰고 있는데, 이러한 시스템의 경우 사용자들의 선호도 점수 정보가 부족하면 정확한 추천결과를 기대할 수 없다. 본 논문에서는 내용기반 필터링 기법을 협력적 필터링 기법과 함께 사용하여 이와 같은 문제를 해결하고자 한다.

  • PDF

A New Approach Combining Content-based Filtering and Collaborative Filtering for Recommender Systems (추천시스템을 위한 내용기반 필터링과 협력필터링의 새로운 결합 기법)

  • Kim, Byeong-Man;Li, Qing;Kim, Si-Gwan;Lim, En-Ki;Kim, Ju-Yeon
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.332-342
    • /
    • 2004
  • With the explosive growth of information in our real life, information filtering is quickly becoming a popular technique for reducing information overload. Information filtering technique is divided into two categories: content-based filtering and collaborative filtering (or social filtering). Content-based filtering selects the information based on contents; while collaborative filtering combines the opinions of other persons to make a prediction for the target user. In this paper, we describe a new filtering approach that seamlessly combines content-based filtering and collaborative filtering to take advantages from both of them, where a technique using user profiles efficiently on the collaborative filtering framework is introduced to predict a user's preference. The proposed approach is experimentally evaluated and compared to conventional filtering. Our experiments showed that the proposed approach not only achieved significant improvement in prediction quality, but also dealt with new users well.

Recommendation Method using Naive Bayesian algorithm in Hybrid User and Item based Collaborative Filtering (사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법)

  • 김용집;정경용;한승진;고종철;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.184-186
    • /
    • 2003
  • 기존의 사용자 기반 협력적 필터링이 가지는 단점으로 지적되었던 희박성과 확장성의 문제를 아이템 기반 협력적 필터링 기법을 통하여 개선하려는 연구가 진행되어 왔다. 실제로 많은 성과가 있었지만. 여전히 명시적 데이터를 기반으로 하기 때문에 희박성이 존재하며, 아이템의 속성이 반영되지 않는 문제점이 있다. 본 논문에서는 기존의 아이템 기반 협력적 필터링의 문제점을 보완하기 위하여 사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법을 제안한다. 제안된 방법에서는 각 사용자와 아이템에 대한 유사도 검색 테이블을 생성한 후, Naive Bayesian 알고리즘으로 아이템을 예측 및 추천함으로써, 성능을 개선하였다. 성능 평가를 위해 기존의 아이템 기반 협력적 필터링 기술과 비교 평가하였다.

  • PDF

Collaborative Filtering Method Using Context of P2P Mobile Agents (P2P 모바일 에이전트의 컨텍스트 정보를 이용한 협력적 필터링 기법)

  • Lee Se-Il;Lee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.643-648
    • /
    • 2005
  • In order to supply services necessary for users intelligently in the ubiquitous computing, effective filtering of context information is necessary. But studies of context information filtering have not been made much yet. In order for filtering of context information, we can use collaborative filtering being used much at electric commerce, etc. In order to use such collaborative filtering method in the filtering of ubiquitous computing environment, we must solve such problems as first rater problem, sparsity problem, stored data problem and etc. In this study, in order to solve such problems, the researcher proposes the collaborative filtering method using types of context information. And as the result of applying this filtering method to MAUCA, the P2P mobile agent system, the researcher could confirm the average result of 7.7% in the aspect of service supporting function.

A study on neighbor selection methods in k-NN collaborative filtering recommender system (근접 이웃 선정 협력적 필터링 추천시스템에서 이웃 선정 방법에 관한 연구)

  • Lee, Seok-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.809-818
    • /
    • 2009
  • Collaborative filtering approach predicts the preference of active user about specific items transacted on the e-commerce by using others' preference information. To improve the prediction accuracy through collaborative filtering approach, it must be needed to gain enough preference information of users' for predicting preference. But, a bit much information of users' preference might wrongly affect on prediction accuracy, and also too small information of users' preference might make bad effect on the prediction accuracy. This research suggests the method, which decides suitable numbers of neighbor users for applying collaborative filtering algorithm, improved by existing k nearest neighbors selection methods. The result of this research provides useful methods for improving the prediction accuracy and also refines exploratory data analysis approach for deciding appropriate numbers of nearest neighbors.

  • PDF

협력적 필터링 추천시스템에서 이웃의 수를 이용한 선호도 예측보정 방법

  • Lee, Seok-Jun;Kim, Sun-Ok;Lee, Hee-Choon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.27-31
    • /
    • 2009
  • 본 연구는 웹상에서 거래되는 아이템을 고객에게 추천하는 추천시스템에서 추천대상 고객의 정보와 이웃 고객의 정보를 이용한 협력적 필터링 추천기법에서 선호도 예측을 위해 필요한 이웃의 수가 선호도 예측 정확도에 영향을 주고 있음을 제시하고 이를 이용한 선호도 예측치의 보정 방법에 대하여 제안한다. 본 연구의 제안을 위하여 이웃 기반의 협력적 필터링 알고리즘과 대응평균 알고리즘을 이용하여 MovieLens 1 million dataset에 대하여 선호도 예측 정확도를 분석하고 분석결과를 토대로 개별 선호도 예측에 소요된 이웃의 수와 예측 정확도의 관계를 분석하였다. 분석결과를 이용하여 이웃 수에 따라 선호도 예측 결과를 다수의 집단으로 구분하여 각 집단에서 이웃의 수를 이용한 선호도 예측 정확도 향상에 대한 방법을 제안한다. 본 연구의 제안을 통하여 기존 선호도 예측 알고리즘으로 생성된 예측 결과에 선호도 예측 과정에서 부가적으로 발생한 정보를 추가하여 최종 예측 결과를 향상시킬 수 있을 것으로 기대한다.

  • PDF

Filtering Technique of P2P Mobile Agent using Naive Bayesian Algorithm (Naive Bayesian 알고리즘을 이용한 P2P 모바일 에이전트의 필터링 기법)

  • Lee Se-Il;Lee Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.363-366
    • /
    • 2005
  • 유비쿼터스 컴퓨팅에서 사용자에게 필요한 서비스를 지능적으로 제공하기 위해서는 컨텍스트 정보의 효과적인 필터링이 필요하다. 현재까지 사용되고 있는 필터링 기술은 온라인상에서 사용되는 사용자 정보를 기준으로 서비스를 제공하고 있다. 하지만 휴대용 유$\cdot$무선기기에서 컨텍스트 인식에 기반을 둔 서비스를 제공하기 위해서는 복잡한 필터링과정과 큰 저장 공간이 요구된다. 따라서 본 논문에서는 사용자 주변에 널려 있는 센서를 통해 입력된 컨텍스트 정보들을 효율적으로 필터링하여 사용자에게 필요한 서비스만을 제공하도록 하였다. 이를 위해서 기존의 P2P 모바일 에이전트에서 사용되는 협력적 필터링 기술에 Naive Bayesian 알고리즘을 혼합한 컨텍스트 협력적 필터링 알고리즘을 제안한다.

  • PDF

Expanded Tag-based Collaborative Filtering Approach (확장된 태그 기반 협력적 필터링)

  • Shin, Dong-Min;Lee, Jae-Won;Lee, Kyeong-Jong;Lee, Sang-Goo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.91-94
    • /
    • 2008
  • 정보 기술의 발전으로 인해 이용할 수 있는 정보가 기하급수적으로 늘어남에 따라, 사용자는 원하는 정보를 얻는 데 어려움을 겪게 되고, 양질의 정보를 찾기 위해 많은 시간을 들이고 있다. 이에 사용자의 의도를 정확하고 명백하게 드러내는 태그 정보에 기반한 협력적 필터링 기법을 이용하여 사용자가 원하는 적절한 음악을 추천하는 시스템을 제안하며, 태그의 확장을 통한 협력적 필터링 기법의 성능 향상을 제안한다.

  • PDF