• Title/Summary/Keyword: 혐기성 분해

Search Result 283, Processing Time 0.031 seconds

Development of process for energy recovery from landfill gas using LFG-Hydrate (LFG-Hydrate를 통한 매립가스 에너지화 공정 개발)

  • Moon, Donghyun;Shin, Hyungjoon;Han, Kyuwon;Lee, Jaejung;Yoon, Jiho;Lee, Gangwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.152.2-152.2
    • /
    • 2010
  • LFG는 매립된 폐기물 중 유기성분이 혐기성조건에서 미생물에 의해 분해가 되면서 발생하며, 이러한 매립지가스는 주변 지역의 자연 및 생활환경에 악영향을 미치기 때문에 소각 등의 방법으로 LFG를 처리하고 있다. 일반적으로 매립지로부터 발생하는 가스의 량은 폐기물 1톤 당 $150{\sim}250m^3$로서 매립 후 2~3년 후에 최대량이 발생하며 매립 후 20~30년 후까지 지속적으로 발생함으로 안정적인 LFG의 공급이 가능하며, 메탄함량이 50%인 경우 약 $5,000kcal/m^3$의 높은 발열량을 가지므로 대체에너지원으로 이용할 경우 환경적인 문제 해결 및 신재생에너지원으로 활용할 수 있다. LFG 자원화 할 경우 가장 안정적인 방안으로 발전 및 중질가스로 활용하는 것이나, 발전의 경우 최소 200만톤 이상의 매립용량을 갖추어야 경제적인 사업성을 확보할 수 있으며, 중질가스로 활용하는 경우 인근에 가스 수요처를 확보해야 하는 어려움이 있다. 만약 중 소규모의 매립장에서 발생하는 LFG를 안전하고 경제적인 조건으로 저장 및 수송할 수 있다면 중 소규모의 매립지에서 발생하는 LFG도 활용할 수 있을 것으로 기대되며, 안전하고 경제적인 저장과 수송기술을 통하여 발전이 아닌 중질가스로의 활용도 가능하게 될 것이다. 또한 여러 곳의 매립장에서 발생한 LFG를 한 곳으로 집중시켜 고질가스로 전환하는 설비비용을 절감할 수 있으며, 정제된 고질가스를 이용하여 발전보다 경제적인 자동차 연료나 도시가스로 활용할 수 있을 것이다. 본 연구에서는 LFG의 저장과 수송기술 중 GTS 기술을 통하여 저장과 수송에 제약이 크고 많은 비용이 소비되는 기체 상태의 에너지원을 하이드레이트화 시킴으로서 중 소규모 매립지에서 상대적으로 적은 비용으로 가스저장과 지상수송이 가능하게 할 수 있다. 본 연구의 결과로 LFG 에너지화 실증화 플랜트를 설계/제작 하였으며, 메탄+이산화탄소+물 하이드레이트 형성 실험 결과 4.56 Mpa, 277.2 K 조건에서 3시간을 한 사이클로 하는 공정운전을 가지는 것을 확인하였다. 이때 생성된 슬러리상의 하이드레이트를 고압으로 배출하여 펠릿으로 형성시켰으며, 형성된 하이드레이트 펠릿의 경우 92.27%의 메탄을 포함하는 것을 확인하였다.

  • PDF

Optimum Recovery of Biogas from Pig Slurry with Different Compositions (돈분 슬러리 성상에 따른 최적 바이오가스 회수)

  • Park, Woo-Kyun;Jun, Hang-Bae;Kwon, Soon-Ik;Chae, Kyu-Jung;Park, Noh-Back
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.197-205
    • /
    • 2010
  • This study was conducted to investigate the optimum conditions for efficient methane production through anaerobic digestion of pig waste slurry. The examined parameters were organic matter content of the pig slurry, the ratio of seed sludge to pig slurry, and stirring intensity of the digestion reactor. The effects of types of slurry produced from different purpose-based pigs fed with different feeds were also tested. The methane concentration in the produced biogas was 45% when the ratio of seed sludge to pig slurry was 50% and total solid (TS) concentration was 1%, and it increased in proportional to TS concentration increases from 3 to 7%. At 3 and 5% of TS concentration, increasing mixing velocity from 80 to 160 rpm resulted in higher biogas production amount. However, mixing amount of seed sludge did not cause any significant effect on biogas production. Overall, the most efficient biogas production was achieved at 3-5% TS concentration in combination with 50% seed sludge inoculation and mixing velocity at 120 rpm. Among pig slurry types, gestating sow waste slurry showed the highest biogas production probably due to higher the degradation rate than other types of pig waste slurry being affected by the feeds components.

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor (연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.596-604
    • /
    • 2019
  • This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

Change of Solubilization Characteristics of Rice Straw by Different Pre-treatments (전처리 방법에 따른 볏짚의 가용화 특성 변화)

  • Hong, Seung-Gil;Shin, JoungDu;Heo, Jeong-Wook;Park, Woo-Kyun;Kwon, Soon-Ik;Park, Noh-Back;Shin, Hyun-Seon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • In order to find a feasibility of applying an agricultural biomass to the anaerobic digestion system, the effects of pre-treatment of rice straw was investigated by different sizes,temperatures, ultrasonic frequencies, and with/without NaOH treatment on the change of soluble organic matter, which is generated most dominantly in Korea. It was observed that SCOD(soluble chemical oxygen demand) as the index for the decomposition of rice straw increased with the smaller particle size, higher reaction temperature and alkali treatment. With treatment of 5% NaOH, it was shown that the highest concentrations of SCOD were observed at 9,000 mg $L^{-1}$ and 6,000mg $L^{-1}$ at $35^{\circ}C$ and $55^{\circ}C$, respectively. Agitating with ultrasonic irradiation could be enhanced SCOD of rice straw less than 3 cm with 40 kHz of ultrasound. Optimal RPM in this study was at 150 rpm regardless of reaction temperatures.

The Removal of Organics and Nitrogen with Step Feed Ratio Change into the Anoxic and Anaerobic reactor in Advanced Sewage Treatment process Using Nonsurface-modified and Surface-modified Media Biofilm (비개질/개질 생물막을 이용한 오수고도처리공정에서 혐기조와 무산소조의 원수 분배율에 따른 유기물 및 질소 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2005
  • This study was accomplished using attached $A^2/O$ process that contains nonsurface-modified and surface-modified polyethylene media inside the Anaerobic/Anoxic, Oxic tank, respectively. We could make the hydrophobic polyethylene media have hydrophilic characteristics by radiating ion beam on the surface of the media. The objectives of this study is to investigate the removal efficiencies of the organics and nitrogen when the step feed ratio of raw wastewater into anaerobic and anoxic tank is changed. In this case, we assumed that the denitrification rate can be improved because the nitrifiers in anoxic tank can perform denitrification using RBDCOD instead of artificial carbon sources (for example, methanol, etc.). The wastewater injection rate into anaerobic/anoxic tank was set up by the ratio of 10 : 0, 9 : 1, 8 : 2, 6 : 4, and the results of BOD removal efficiency showed similar trends with $93.3\%,\;92.6\%,\;92.4\%\;and\;91.6\%$, respectively. But the BOD removal efficiency (utilization of the organics) in the anoxic tank was in the order of 9 : 1 $(84.8\%)$, 10 : 0 $(77.0\%)$, 8 : 2 $(75.3\%)$, and 6 : 4 $(61.1\%)$. The T-N removal efficiency was most high when the ratio is 9 : 1 $(67.4\%)$, and other conditions, 10 : 0, 8 : 2, 6 : 4, showed $61.3(\%),\;60.7\%,\;55.5\%$, respectively; the ratio 6 : 4 was found to be lowest T-N removal efficiency, lower than the ratio 9 : 1 by $12\%$. Though the nitrification rate of the ratio 10 : 0, 9 : 1, and 8 : 2 showed similar levels, the ratio 6 : 4 showed considerable inhibition of nitrification, ammonia was the great portion of the effluent T-N. The advantages of this process is that this process is cost-saving, and non-toxic methods than injecting the artificial carbon source.

Investigation of Nutrient Release from the Sediments Near Weir in the Namhan River (남한강 보 구간 퇴적물의 영양염류 용출에 관한 연구)

  • Kim, Hye Yeon;Huh, In Ae;Choi, Jung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.554-563
    • /
    • 2013
  • The purpose of this study is to evaluate the possibility of nutrient release at up and downstream of Kangchun weir, upstream of Yuju and Ipo weir in Namhan River. For this survey, we measured basic characteristics of the sediments (water content, ignition loss, TOC, TP, SRP, TN, phosphorus fractionation) and conducted nutrients release experiments under both aerobic and anaerobic condition. The overlying water from the sediment-water column was analyzed for nutrients (i.e. TP, $PO_4$-P, TN, $NO_3$-N, $NH_3$-N) everyday for 18days. Result of soil texture experiment showed that sediments are Sand. SRP concentration before the release experiment was different with the value after the release experiment. According to this result, we can find that there were more activated release processes in anaerobic condition. $PO_4$-P increased from 1 to 8 days and remained at the maximum value (7~8 days) afterward. The rapidly increase of $PO_4$-P was observed from 1 to 2~3 days whereas the TP continuously increase from 1 to 18 days. The $PO_4$-P release rate calculated by up to 7~8 days data highly correlated with initial SRP concentration with $R^2$=0.8502. $NO_3$-N release rate appears constantly decreasing trend as -5.7~-3.08 $mg/m^2{\cdot}day$, otherwise the $NH_3$-N release rate, by-product of a organic matter decomposition using nitrate as electron acceptor, was 0.57~2.41 $mg/m^2{\cdot}day$. Substantial portion in TN can be induced by organic nitrogen which originated from the tributary passing through non-point pollutant source. Compared with other similar researches, phosphorus and nitrogen release rates obtained in this study can be considered as relatively low values. Since this study targeted the sediments accumulated by one time of flooding season, there are limitation to generalize theses results. Therefore, it is necessary to consistently monitor and investigate the accumulation of nutrients in the sediment for understanding the effect of weir construction on the overlying water quality.

Development of the Functional Films Coated with Nano-TiO2 Particles for Food Packaging and Removal of Off-flavor from Soybean Sprouts (나노 TiO2를 적용한 식품 포장 필름 개발 및 콩나물의 이취 제거)

  • Choi, Yeonwook;Jeon, Kyu Bae;Song, Kihyeon;Kim, Jai Neung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.733-737
    • /
    • 2015
  • For testing the ultraviolet (UV)-blocking property of functional films coated with Nano-$TiO_2$ particles, UV-Vis spectra of oriented polypropylene (OPP) films uncoated and coated with $TiO_2$ of 3% and 5% in Polyurethane (PU) and polyvinyl butyral (PVB)-Cellulose binders were measured. The result of UV-Vis analyses showed that the film coated with 5% $TiO_2$ in PVB binders had a significant effect on UV protection of 90% compared with the film uncoated. Also The result of The photodegradation of methylene blue (MB), OPP films coated with 5% in both PU and PVB binders had a high photocatalytic activity for MB degradation. To evaluate the effect of the developed functional film coated with Nano-$TiO_2$ particles, fresh soybean sprouts were used. Nano-$TiO_2$ coated film was observed to decompose the off-flavor produced by soybean sprouts within packages during distribution, but uncoated film did not. Therefore, Nano-$TiO_2$ coated film package could give the greatest effect in extending the shelf life of soybean sprouts.

Methane Gas Emission from an Artificial Reservoir under Asian Monsoon Climate Conditions, with a Focus on the Ebullition Pathway (아시아 몬순 기후지역에 위치한 대형 인공호에서 기포형태로의 메탄 (CH4) 가스 배출량)

  • Kim, Kiyong;Jung, Sungmin;Choi, Youngsoon;Peiffer, Stefan;Knorr, Klaus-Holger;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.2
    • /
    • pp.160-167
    • /
    • 2018
  • The role played by reservoirs in the biogeochemical cycles of elements is a subject of ongoing debate. Recent research has revealed that reservoirs emit significant levels of greenhouse gases. To assess the importance of reservoirs in monsoon climate areas as a source of methane gas into the atmosphere, we investigated variations in organic carbon (OC) input into the reservoir, oxic state changes, and finally the amount of methane emitted (focusing on the ebullition pathway) in Lake Soyang, which is the largest reservoir in South Korea. Total organic carbon (TOC) concentrations were higher during summer after two years of heavy rainfall. The sedimentation rates of particulate organic carbon (POC) and particulate organic nitrogen (PON) were higher in the epilimnion and hypolimnion than the metalimnioin, indicating that autochthonous and allochthonous carbon made separate contributions to the TOC. During stratification, oxygen depletion occurred in the hypolimnion due to the decomposition of organic matter. Under these conditions, $H_2S$ and $CH_4$ can be released from sediment. The methane emissions from the reservoir were much higher than from other natural lakes. However, the temporal and spatial variations of methane ebullition were huge, and were clearly dependent on many factors. Therefore, more research via a well-organized field campaign is needed to investigate methane emissions.

Biochemical Methane Potential of Agricultural Residues and Influence of Ensiling on Methane Production (시설농업부산물의 잠재메탄발생량 평가 및 사일로 저장에 따른 메탄 발생 변화)

  • Lee, Yu Jin;Cho, Han Sang;Kim, Jae Young;Kang, Jungu;Rhee, Sungsu;Kim, Kyuyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.765-771
    • /
    • 2012
  • In this study, the biochemical methane potentials of different agricultural residues produced from agricultural plastic greenhouse were determined. Additionally, ensiling storage practice was applied on agricultural residues for its effect on biogas production. Agricultural residues of cabbage, strawberry, tomato, cucumber, and oriental melon were selected as sample. The methane potential and biodegradability of agricultural residues ranged from 149~286 mL-$CH_4/g$-VS, 27~48% (by vol.), respectively and methane production was in order of cabbage > oriental melon > strawberry ${\approx}$ cucumber > tomato. Ensiling caused difference in methane production in a range of -11~36% (by vol.) per VS compared with raw material. An increase in methane potential was presumably linked to the organic acid accumulation, cellulose degradation and decrease in methane potential was due to chemical composition change, ammonia accumulation during the storage process.

Partial Pressures of $CO_2\;and\;H_2$ and Fate of By-products in Anaerobic Bio-Hydrogen Fermentation (혐기성 생물수소 발효에서 이산화탄소 및 수소의 분압과 부산물의 거동)

  • Park, Woo-Shin;Kim, In-S.
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.408-412
    • /
    • 2005
  • In a previous research, it has been found that it could be possible to increase the partial pressure of hydrogen and hydrogen yield by scavenging the $CO_2$ from the heads pace of reactor. In this research, the positive and negative effects of the $CO_2$ scavenging especially on the fate of by-products were investigated by a batch experiment. Production and conversion of by-products had critical relationships with hydrogen evolution and consumption. The maximum hydrogen fraction in the headspace was increased from 66.4 to 91.2% by removing the $CO_2$ in the headspace and the degradation rate of glucose was also enhanced. The removal of $CO_2$ effectively hindered the homoacetogenesis but caused several negative phenomena. The degradation of ethanol, one of the main products, was inhibited by the high partial pressure of hydrogen and/or the absence of $CO_2$. Also it was observed that other by-products such as propionate, propanol, acetone, etc. could not be degraded further after produced from glucose. On the other hand, solventogenesis was not observed in spite of the high hydrogen partial pressure apart from previous researches and it might hinder the excess production of acetate, which could cause overall inhibition. From this research, it could be implicated that the $CO_2$ scavenging method could be recommended if the fermentation was purposed to produce hydrogen and ethanol.