• Title/Summary/Keyword: 현장학습

Search Result 2,264, Processing Time 0.031 seconds

A comparative analysis of Leadership Competency Education System in Korea, US and UK (한국·미국·영국의 유아교육기관 원장 리더십역량 교육체계 비교분석)

  • Park, Soo-Jin;Kim, Mi-Kyung
    • Korean Journal of Comparative Education
    • /
    • v.27 no.4
    • /
    • pp.255-283
    • /
    • 2017
  • The purpose of this study is to analyze the comtent of the education system of US and the UK in order to build an integrated system that can develop the leadership competency of preschool principle. Based on this, the implications are as follows. First, competencies can developed through learning rather than fixed. Therefore, re-conceptualization of leadership competence appropriate to the characteristics and organization of the individual as the presiding authority of the preschool can be considered as ability to show visible knowledge and skills, invisible self concept. Therefore, it is necessary to establish a capacity development plan based on this. Second, the introduction and implementation of continuous and systematic training programs such as the training system that strengthens the capacity of the directors and principals of the United States and the United Kingdom is necessary. To do this, we must introduce a system that renews certification every five years, like the United States, rather than a system that acquires and maintains certification with a single training. Third, various training methods should be carried out. In the case of the US and the UK, we think it is desirable to train in various ways in the training period, the university, the teacher center, and the private organization or association. Therefore, it is necessary to build a cooperation system with various institutions such as training institutes, universities, teacher centers, educational information research institutes, and private organizations in each province, and strengthen them in various ways. Fourth, the contents and methods of qualification training and future job training of the director of the preschool should be deviated from the uniform level. Therefore, the systematic research that reflects the knowledge and contents of the administration required in the field should be given priority by the university or research organization that is in charge of the training.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

A Comparison between the Reference Evapotranspiration Products for Croplands in Korea: Case Study of 2016-2019 (우리나라 농지의 기준증발산 격자자료 비교평가: 2016-2019년의 사례연구)

  • Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Youn, Youjeong;Kim, Nari;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1465-1483
    • /
    • 2020
  • Evapotranspiration is a concept that includes the evaporation from soil and the transpiration from the plant leaf. It is an essential factor for monitoring water balance, drought, crop growth, and climate change. Actual evapotranspiration (AET) corresponds to the consumption of water from the land surface and the necessary amount of water for the land surface. Because the AET is derived from multiplying the crop coefficient by the reference evapotranspiration (ET0), an accurate calculation of the ET0 is required for the AET. To date, many efforts have been made for gridded ET0 to provide multiple products now. This study presents a comparison between the ET0 products such as FAO56-PM, LDAPS, PKNU-NMSC, and MODIS to find out which one is more suitable for the local-scale hydrological and agricultural applications in Korea, where the heterogeneity of the land surface is critical. In the experiment for the period between 2016 and 2019, the daily and 8-day products were compared with the in-situ observations by KMA. The analyses according to the station, year, month, and time-series showed that the PKNU-NMSC product with a successful optimization for Korea was superior to the others, yielding stable accuracy irrespective of space and time. Also, this paper showed the intrinsic characteristics of the FAO56-PM, LDAPS, and MODIS ET0 products that could be informative for other researchers.

A Discussion on the Establishment of a New Interdisciplinary Convergence Major(Lifelong Education for Disabled) based on Special Education, Rehabilitation Science, and Social Welfare at Daegu University (대구대학교 특수교육-재활과학-사회복지 기반 학제 간 융합전공(장애인평생교육) 신설 논의)

  • Kim, Young-Jun;Kim, Wha-Soo;Rhee, Kun-Yong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.147-156
    • /
    • 2022
  • The purpose of this study was to review various grounds and plans for the establishment of a convergence major in lifelong education for the disabled based on Daegu University, which establishes its status and identity as a base university for education and welfare for the disabled. Lifelong education for the disabled reflects the specificity of disability in common because it targets disabled learners, but since it constitutes two perspectives and characteristics of education and welfare, access to interdisciplinary convergence research in disabled-related fields is important. In the above dimension, Daegu University has an appropriate foundation to lead lifelong education for the disabled in Korea through various academic and practice-based infrastructures, and has sufficient leadership to improve the practical limitations of the lifelong education support system for the disabled. Accordingly, this study presented measures and related grounds to reflect lifelong education for the disabled in order to establish an interdisciplinary convergence major at Daegu University through literature review and expert advice. It was emphasized that lifelong education for the disabled, viewed as a new interdisciplinary convergence major, should be activated through professional competencies commonly accessible to the three fields rather than applied from a priority perspective between special education, rehabilitation science, and social welfare. As a result of the study, it was suggested that Korea, which failed to establish a lifelong education support system for the disabled, should gradually spread and spread to other universities starting with Daegu University's application model and plan. In addition, the necessity of systematically establishing a qualification development path for lifelong education professionals for the disabled through agreement between the three fields was also suggested.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Trends in Pre-service Science Teacher Education Research in Korea (우리나라 예비 과학교사 교육 연구의 동향)

  • Lee, Gyeong-Geon;An, Taesoo;Mun, Seonyeong;Hong, Hun-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.1
    • /
    • pp.127-147
    • /
    • 2022
  • Pre-service science teacher education is important to elaborate the quality of science teaching and learning in schools. Therefore, many pre-service science teacher education researches have been done in Korea. However, almost no research has comprehensively reviewed those literatures including secondary teacher education context. This study reviewed 410 pre-service science teacher education researches in Korea, from 1995 to 2021 published by 17 journals in KCI. The trends were analyzed with respect to the number of article according to period, keyword frequency, and qualitative features. The qualitative features were coded in multiple aspects of pre-service teachers' type, major, subject-matter in research context, research approach, data type, and the number of participants. The results indicate that the number of research articles has increased by about 40 for every 5-year period. JKASE has published most articles, and the diversity of journals has increased since 2010. Keyword frequency revealed that scientific concepts, science teaching efficacy, nature of science, and other teaching and learning contexts were emphasized. In qualitative features, the most frequent pre-service type was secondary in 'general' science context. For research topic, 'pre-service teacher education program' and 'perception and cognitive domain' were the most frequent. Most of the articles have 'analyzed' the phenomena or consequence of educational issue. Most research was conducted with 11 to 30 participants. These patterns of qualitative features have differed according to period, and types of pre-service teacher. Suggestions for the future pre-service science teacher education research topic were explored, such as policy-administrative research, integrated science teacher education, teacher agency, and environmental education.

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

Pre-service mathematics teachers' noticing competency: Focusing on teaching for robust understanding of mathematics (예비 수학교사의 수학적 사고 중심 수업에 관한 노티싱 역량 탐색)

  • Kim, Hee-jeong
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.339-357
    • /
    • 2022
  • This study explores pre-service secondary mathematics teachers (PSTs)' noticing competency. 17 PSTs participated in this study as a part of the mathematics teaching method class. Individual PST's essays regarding the question 'what effective mathematics teaching would be?' that they discussed and wrote at the beginning of the course were collected as the first data. PSTs' written analysis of an expert teacher's teaching video, colleague PSTs' demo-teaching video, and own demo-teaching video were also collected and analyzed. Findings showed that most PSTs' noticing level improved as the class progressed and showed a pattern of focusing on each key aspect in terms of the Teaching for Robust Understanding of Mathematics (TRU Math) framework, but their reasoning strategies were somewhat varied. This suggests that the TRU Math framework can support PSTs to improve the competency of 'what to attend' among the noticing components. In addition, the instructional reasoning strategies imply that PSTs' noticing reasoning strategy was mostly related to their interpretation of noticing components, which should be also emphasized in the teacher education program.

Derivation of Inherent Optical Properties Based on Deep Neural Network (심층신경망 기반의 해수 고유광특성 도출)

  • Hyeong-Tak Lee;Hey-Min Choi;Min-Kyu Kim;Suk Yoon;Kwang-Seok Kim;Jeong-Eon Moon;Hee-Jeong Han;Young-Je Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.695-713
    • /
    • 2023
  • In coastal waters, phytoplankton,suspended particulate matter, and dissolved organic matter intricately and nonlinearly alter the reflectivity of seawater. Neural network technology, which has been rapidly advancing recently, offers the advantage of effectively representing complex nonlinear relationships. In previous studies, a three-stage neural network was constructed to extract the inherent optical properties of each component. However, this study proposes an algorithm that directly employs a deep neural network. The dataset used in this study consists of synthetic data provided by the International Ocean Color Coordination Group, with the input data comprising above-surface remote-sensing reflectance at nine different wavelengths. We derived inherent optical properties using this dataset based on a deep neural network. To evaluate performance, we compared it with a quasi-analytical algorithm and analyzed the impact of log transformation on the performance of the deep neural network algorithm in relation to data distribution. As a result, we found that the deep neural network algorithm accurately estimated the inherent optical properties except for the absorption coefficient of suspended particulate matter (R2 greater than or equal to 0.9) and successfully separated the sum of the absorption coefficient of suspended particulate matter and dissolved organic matter into the absorption coefficient of suspended particulate matter and dissolved organic matter, respectively. We also observed that the algorithm, when directly applied without log transformation of the data, showed little difference in performance. To effectively apply the findings of this study to ocean color data processing, further research is needed to perform learning using field data and additional datasets from various marine regions, compare and analyze empirical and semi-analytical methods, and appropriately assess the strengths and weaknesses of each algorithm.