• Title/Summary/Keyword: 현장적용시험

Search Result 1,647, Processing Time 0.024 seconds

Application of Artificial Neural Network to the Estimation of Mass Conversion Rate in Weathered Granite Soils (화강암 풍화토의 토량 변화율 추정을 위한 인공신경망 적용)

  • 김영수;정성관;임안식;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.73-83
    • /
    • 2001
  • 본 연구에서는 전국 4개 지구의 화강암 풍화토를 연구대상으로 현장 및 실내시험을 수행하고 토량 변화율을 노상과 노체에 대하여 결정하였다. 그리고, 본 연구에서는 인공 신경망 중 오류 역전파 학습 알고리즘을 도입하여 토량 변화율 C 값을 추정하고 신경망의 적용성에 대한 검증을 수행하였다. 화강암 풍화토에 대한 실내 및 현장시험 결과에서 얻어진 토량 변화율 C 값은 노상과 노체 구분 없이 최소 0.7에서 최대 1.2정도의 넓은 범위로 나타났다. 토지공사에서 제안하는 C값의 산정식과 본 연구 결과를 비교한 결과, 토지공사의 산정식에 의한 결과가 과대 평가될 가능성이 큰 것으로 나타났다. 비중, 자연 함수비, 자연상태의 습윤단위중량, #200 통과율 그리고 균등계수의 입력변수를 갖는 $I_{5-1}$$H_{30-30}$$O_1$의 신경망에서 다른 신경망 구조들보다 잦은 지역 최소점에 수렴하는 결과를 보였다. 본 연구에서 사용한 모든 신경망 구조에서 시험결과와 신경망 결과의 상관계수는 0.9이상으로 나타나 높은 상관성을 나타내었다. 특히, 인공 신경망에 의한 예측결과는 다양한 영향인자들 중에서 비중, 자연 함수비, 자연상태의 습윤단위중량 그리고 #200 통과율의 4개 변수만으로도 C값을 예측할 수 있었으며, 상관계수는 0.96으로 나타났다.다.

  • PDF

Development of Power Plant Simulator for Control System Verification & Validation (제어 검증용 발전소 시뮬레이터 개발)

  • Byun, Seung-Hyun;Hwang, Do-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.41-51
    • /
    • 2010
  • A control system has been being developed by korean engineers for 500MW korean standard type fossil power plant with the advent of retrofit of old control system. Simulators have been used for digital I&C system pre-tests and validation tests in nuclear power plants. In this paper, the power plant simulator for control system V&V was developed in order to verify the developed control system prior to application to a power plant. The control models were developed using plant control system data, translator programs, and vendor manuals. The developed simulator was verified by steady-state test, load swing test, transient test and so on.

Behaviour of Reinforced Earth Wall with Steel Framed-Facing based on Field Test (현장시험을 이용한 강재틀 보강토옹벽의 안정성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.37-47
    • /
    • 2011
  • This paper describes the stability evaluation of reinforced earth wall with steel framed-facing based on field test. The reinforced earth wall with steel framed-facing is composed of wall facing, reinforcement and backfill soil. The wall facing is assembled by steel frames and the aggregates are filled in that. The reinforcement is steel strip type based on bearing resistance. Field test is conducted to evaluate for two separate sections and the measurement is conducted according to construction elapsed time of structure for earth pressure, horizontal displacement of wall facing and reinforcement strain. The evaluation results show that the measured earth pressure is less than theoretical earth pressure due to dispersion effect of earth pressure by the applied reinforcement. Also, the horizontal displacement of wall facing satisfied a empirical criteria and the measured strain of reinforcement had nearly no effect on stability of structure. Therefore, the reinforced earth wall with steel framed-facing has a structural stability and it can be commonly used in field.

A Study on Field Application of a Deformable Rod Sensor to Large Diameter Drilled Shafts (대구경 현장타설말뚝에 대한 변형봉 센서의 현장적용성에 관한 연구)

  • 정성기;김상일;정성교;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.15-22
    • /
    • 2003
  • In the conventional load transfer analysis for a steel pipe drilled shaft, it was assumed that the concrete's strain is the same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by the formular as prescribed by specification is used in the calculation of pile axial load. But, the pile axial load calculation by conventional method differed to some extent from the actual pile load. So, the behavior of a steel pipe drilled shaft could not be analyzed exactly. Thus, the necessity to measure the strain for each pile component was proposed. In this study, a new approach for load transfer measurement of large diameter drilled shafts was suggested ; the strain of each pile component(i. e., steel and concrete) was measured by DRS(Deformable Rod Sensor), the elastic modulus was determined by the uniaxial compression test for concrete specimens made at test site and a value of elastic modulus was evaluated as average tangential modulus corresponding to the stress level of the (0.2-0.6)$f_{ck}$. Field application was confirmed by the results of load transfer measurement tests for 3 drilled shafts. The errors for calculated pile head load were -11 ∼16% and 3.4% separately.

Verification of Applicability of Hybrid CFFT Pile for Numerical Analysis (수치해석을 통한 FRP 콘크리트 합성말뚝 적용성 평가)

  • Kim, HongTaek;Lee, MyungJae;Park, JeeWoong;Yoon, SoonJong;Han, YeonJin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.59-67
    • /
    • 2011
  • The interaction of the ground deformation and composite piles, which is made of fiber glass, was analyzed for the effective pile application under vertical loads. This study was performed to conduct experimentation test and propose the material characteristics of the new type concrete injection circular FRP pile for the improvement of the defect of CFFT-Concrete composition piles and FRP-Concrete composition piles(FRP reinforced column direction). Additionally, in order to analyze the behaviour characteristics of composite pile and steel pile the numerical analyses were carried out.

Evaluation Technique of Ground Densification on Sand Deposit using SASW and Resonant Column Tests (표면파시험과 공진주시험을 이용한 사질토지반 개량평가 시스템의 개발)

  • 김동수;박형춘;김성인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 1999
  • In order to assess the quality and depth of ground densification by compaction, SPT and/or CPT are performed before and after compaction. Both methods are intrusive and one point tests, require a substantial time to evaluate a large area, and their results are quite dependent on the operation technique and soil type. In this paper, the quality and extent of ground densification by compaction was evaluated by using in situ SASW test and laboratory resonant column (RC) test results. SASW test was used to determine the shear wave velocity profiles before and after compaction, and RC test was adopted to determine the correlation between the normalized shear wave velocity and the density of the site, which is almost uniquely independent of confinement. Testing and data reduction procedures of both tests were discussed, and a simplified evaluation procedure of ground densification was proposed. Finally, the feasibility of the proposed method was verified by performing field study at Inchon International Airport Project. Field densities determined by the proposed method matched well with those determined by sand cone tests.

  • PDF

A Study on Characteristics of the Desiccation Shrinkage in Reclaimed Hydraulic Fills (준설매립지반의 건조수축특성에 관한 연구)

  • 홍병만;김상규;김석열;김승욱;김홍택;강인규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.219-238
    • /
    • 1999
  • In the present study, laboratory tests including the seepage-induced consolidation test, suction test, and desiccation shrinkage test are performed to investigate characteristics of the desiccation shrinkage in reclaimed hydraulic fills. Soil samples for laboratory tests are obtained from three sites (districts of Haenam, Kogeum and Koheung in Chunnam area). Desiccation shrinkage settlement caused by three dimensional volume change is numerically evaluated using finite difference technique based on the governing equation proposed by Abu-Hejleh & Znidarcic. Also characteristics of the desiccation shrinkage analyzed from the test results are used as input data for numerical evaluations. Further predicted total settlements including the self-weight consolidation settlement are compared with values measured at the site of Haenam district. Finally, effects of parameters related to the desiccation shrinkage on settlements are examined.

  • PDF

Application of Linear Curve Fitting Methods for Slug Test Analysis in Compressible Aquifer (압축성이 큰 지반에서 순간변위(충격)시험 해석을 위한 선형 커브피팅법(Linear Curve Fitting Methods)의 적용)

  • Choi, Hang-Seok;Lee, Chul-Ho;Nguyen, The Bao
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.99-107
    • /
    • 2007
  • The linear curve fitting methods such as the Hvorslev method and the Bouwer and Rice method provide a rapid and simple means to analyze slug test data for estimating in-situ hydraulic conductivity (k) of geologic material. However, when analyzing a slug test in a relatively compressible aquifer, these methods have difficulties in fitting a straight line to the semi-logarithmic plot of the test data that shows a concave-upward curvature because the linear curve fitting methods ignore the role of the compressibility or specific storage ($S_s$) of an aquifer. The comparison of the Hvorslev method and the Bouwer and Rice method is made far a partially-penetrating well geometry to show analytically that the Hvorslev method estimates higher hydraulic conductivity than the Bouwer and Rice method except that the well intake section locates very close to the bottom of the aquifer. The effect of fitting a straight line to the slug test data is evaluated along with the dimensionless compressibility parameter (${\alpha}$) ranging from 0.001 to 1. A modified linear curve fitting method that is expanded from Chirlin's approach to the case of a partially penetrating well with the basic-time-lag fitting method is introduced. A case study for a compressible glacial till is made to verify the proposed method by comparing with a type curve method (KGS method).

An Evaluation of Epoxy Asphalt Mixtures for Long-Span Steel Bridge Deck (장경간 강바닥판 교량용 에폭시 아스팔트 혼합물의 적용성 평가)

  • Baek, Yu Jin;Park, Chang Woo;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.579-586
    • /
    • 2012
  • The main objective of the research is to evaluate the laboratory performances of epoxy asphalt mixtures for long-span steel bridge decks. The aggregate gradations were recommended for field applications. The laboratory performance test results showed that the durability of epoxy asphalt mixtures was more noticeable than that of conventional ones. The structural analysis was conducted using resilient modulus and bond-shear test results. The analysis results revealed that just 9% out of total bond-shear stress was enough for the entire required bond-shear stress in the pavement system. The tensile stresses in the bridge decks were within limits compared to the laboratory test results from the Nanjing Grand Bridge in China. As a result, the laboratory performances of the epoxy asphalt mixtures for long-span steel bridge decks were better than those of conventional asphalt mixtures. However, the laboratory performance tests of epoxy asphalt mixtures for long-span steel bridge decks should be conducted precisely since the strengths of the mixtures are sensitive to the temperatures and curing times.

Field Application Analysis of Center Control Emergency Vehicle Preemption System (중앙제어방식 긴급자동차 우선신호 현장적용성 분석)

  • Lee, Young-Hyun;Han, Seung-Chun;Jeong, Do-Young;Kang, Jin-Dong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.137-154
    • /
    • 2019
  • This study analysed the center control emergency vehicle preemption[EVP] test result on the 1.782 km section around Gangbuk Fire Station. The pros and cons between center control and site control EVP was compared through the review of existing research. The test site was selected based on the higher link speed for choosing low congested area and 4 to 6 lane road. EVP operates green extension under the estimated arrival time to each intersection. This study is about EVP system field application and its evaluation by analyzing EVP operation result with the emergency vehicle's trace, GPS data. The impact on the surrounding traffic was analysed in delay from the queue length survey. Analysis showed the decrease in averge travel time 41.81%, but the increase in delay of surrounding traffic slightly. It is expected that EVP can be applied to the expanded area by researching EVP compensation scheme.