• Title/Summary/Keyword: 현장재활용

Search Result 293, Processing Time 0.019 seconds

Microbial Monitoring and Exploring Ways to Prevent or Minimize Microbial Contamination at the Production and Distribution Stages of Fresh Strawberries (신선한 딸기의 생산 및 유통 단계에서의 미생물 모니터링 및 미생물 오염 방지 또는 저감화 방법 모색)

  • Kim, Sol-A;Lee, Jeong-Eun;Kim, Go-Un;Kim, Soo-Hwan;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.485-492
    • /
    • 2017
  • This study investigated to determine the microbial contamination levels of strawberries at harvest and distribution stages and to suggest a control measure for reducing the microbial contamination of strawberries by replacing worker's gloves used at harvest and distribution stages. According to the monitoring results, the contamination levels of total aerobic bacteria (TAB) were in the order of soil ($7.12{\pm}0.61{\log}_{10}CFU/g$), gloves ($6.06{\pm}1.80{\log}_{10}CFU/cm^2$), strawberry ($3.28{\times}0.98{\log}_{10}CFU/g$), and water ($3.08{\pm}0.55{\log}_{10}CFU/g$) at harvest stage. TAB of strawberry at was harvest stage reduced from $3.28{\pm}0.98{\log}_{10}CFU/g$ to $1.85{\pm}0.21{\log}_{10}CFU/g$ and $2.6{\pm}0.30{\log}_{10}CFU/g$ at cold and room temperature storage, respectively. By the replacement of worker's gloves and distribution temperature, TAB levels of the strawberries were significantly reduced when compared to those of the strawberries treated without replacement of worker's gloves and distributed at room temperature. For reusing the replaced gloves, washing with a commercial disinfectant, clorox, was effective to reduce microorganisms contaminated on the worker's gloves. These results demonstrated that appropriate replacement of gloves at the harvest and distribution stages is an effective method for reducing microbial contamination of fresh strawberries.

A study on the introduction of organic waste-to-energy incentive system(I): Precise monitoring of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(I): 바이오가스화 정밀모니터링)

  • Kwon, Jun-Hwa;Moon, Hee-Sung;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.67-76
    • /
    • 2021
  • Biogasification is a technology that produces environmentally friendly fuel using methane gas generated in the process of stably decomposing and processing organic waste. Biogasification is the most used method for energy conversion of organic waste with high moisture content, and is a useful method for organic waste treatment following the prohibition of direct landfill (2005) and marine dumping (2013). Due to African Swine Fever (ASF), which recently occurred in Korea, recycling of wet feed is prohibited, and consumers such as dry feed and compost are negatively recognized, making it difficult to treat food waste. Accordingly, biogasification is attracting more attention for the treatment and recycling of food waste. Korea's energy consumption amounted to 268.41 106toe, ranking 9th in the world. However, it is an energy-poor country that depends on foreign imports for about 95.8% of its energy supply. Therefore, in Korea, the Renewable Energy Portfolio Standard (RPS) is being introduced. The domestic RPS system sets the weight of the new and renewable energy certificate (REC, Renewable energy certificate) of waste energy lower than that of other renewable energy. Therefore, an additional incentive system is required for the activation of waste-to-energy. In this study, the operation of an anaerobic digester that treats food waste, food waste Leachate and various organic wastes was confirmed. It was intended to be used as basic data for preparing the waste-to-energy incentive system through precise monitoring for a certain period of time. Four sites that produce biogas from organic waste and use them for power generation and heavy gas were selected as target facilities, and field surveys and sampling were conducted. Basic properties analysis was performed on the influent sample of organic waste and the effluent sample according to the treatment process. As a result of the analysis of the properties, the total solids of the digester influent was an average of 12.11%, and the volatile solids of the total solids were confirmed to be 85.86%. BOD and CODcr removal rates were 60.8% and 64.8%. The volatile fatty acids in the influent averaged 55,716 mg/L. It can be confirmed that most of the volatile fatty acids were decomposed and removed with an average reduction rate of 92.3% after anaerobic digestion.

A Study on the Direction of Planting Renewal in the Green Area of Seoul Children's Grand Park Reflecting Functional Changes (기능변화를 반영한 서울어린이대공원 조성녹지의 식재 리뉴얼 방향성 연구)

  • Park, Jeong-Ah;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.21-36
    • /
    • 2023
  • As a solution to environmental issues, such as climate change response, the carbon neutrality strategy, urban heat islands, fine dust, and biodiversity enhancement, the value of urban green spaces and trees are becoming important, and various studies dealing with the effects of trees for environmental improvement are being conducted. This study comprehensively considers the preceding studies on planting tree species, planting structure, planting density, and planting base to propose a direction for the planting renewal of green areas in urban parks and applies the findings to a renewal plan to improve the urban environment through landscaping trees. A field survey was conducted on the planting status of Seoul Children's Grand Park, a large-scale neighborhood park in Seoul, and based on the survey data, a planting function evaluation was conducted, and areas needing improvement in planting function were identified. The planting function evaluation was carried out considering the park function setting, planting concept according to spatial function, and planting status. As a result of the study, the direction of planting renewal according to functional change was derived for each stage of planting function evaluation. Increasing the green area ratio is a priority in setting up park functions, but user convenience should also be considered. As a concept of planting, visual landscape planting involves planting species with beautiful tree shapes, high carbon absorption, and fine dust reduction effects. Ecological landscape planting should create a multi-layered planting site on a slope. Buffer planting should be created as multi-layered forests to improve carbon absorption and fine dust reduction effects. Green planting should consist of broad-leaved trees and herbaceous layers and aim for the natural planting of herbaceous species. For plant species, species with high urban environment improvement effects, local native species, and wild bird preferred species should be selected. As for the planting structure, landscape planting sites and green planting sites should be composed of trees, shrubs, and trees and herbaceous layers that emphasize ecology or require multi-layered buffer functions. A higher standard is applied based on the planting interval for planting density. Installing a rainwater recycling facility and using soil loam for the planting base improves performance. The results of this study are meaningful in that they can be applied to derive areas needing functional improvement by performing planting function evaluation when planning planting renewal of aging urban parks and can suggest renewal directions that reflect the paradigm of functional change of created green areas.