• Title/Summary/Keyword: 혀의 촉각

Search Result 3, Processing Time 0.015 seconds

The Relationship of Two-Point Discrimination Threshold and the Number of Fungiform Papilla According to Anatomical Location of Tongue (해부학적 위치에 따른 혀의 촉각식별능의 차이와 심상유두 개수의 관계)

  • Kim, Kyun-Yo;Hur, Yun-Kyung;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.4
    • /
    • pp.295-303
    • /
    • 2008
  • The lingual branch of the trigeminal nerve transmitts general sensation from anterior two thirds of the tongue, also bearing within sheath fibers of chordal tympani branch of the facial nerve. Chorda tympani nerve carries special taste sensations from the anterior two thirds of the tongue and sub-serves the existing trigeminal pathway. Chorda tympani nerve and the lingual nerve innervate to fungiform papilla and distribution of fungiform papilla on tongue dorsum is variable according to anatomical location. The purpose of this report is to assess that the relationship of the number of fungiform papilla and the ability of two-point discrimination of tongu dorsum. Twenty-six healthy students(male:female=13:13) whose mean age was $30{\pm}3$ participated in our study. Two-point discrimination thresholds were measured to evaluate the spatial acuity of touch sensation. The measurement was carried out at the tip and posterolateral region of dorsal tongue. After two-point discrimination test, we took the pictures of their dorsal tongue dyed with methylene blue with digital camera. There were no significant differences between the number of fungiform papilla and the two-point discrimination threshold. But, we found that there were the intraregional and intersubject variations of spatial acuity of the tongue. During the test on the posterolateral region of the dorsal tongue, students appealed the difficulty of discrimination of one point and two point.

세라믹 센서의 현상과 장래동향

  • 박춘배;송민종
    • Electrical & Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.438-446
    • /
    • 1994
  • 인류는 지금 2차석기시대를 맞이하고 있으며 이 시대는 인공으로 만들어지는 돌인 세라믹이 단순히 용기나 도구로 사용되는 것 이외에 정보화사회에 있어서 기술의 관건이 될 지능소자로서 사용되고 있다. 세라믹은 내열성, 내식성, 내마모성이라는 특성으로 인해 많이 이용되어 왔지만 이러한 특성 이외에도 전자적 기능, 광학기능, 화학기능 등 "두뇌"도 우수한 재료라 할 수 있다. 더구나 세라믹은 인간을 대신하여 감지하는 것이 가능한 각종 센서로서도 폭넓게 이용되고 있다. 인간에 있어서 눈, 코, 귀, 혀, 피부 등 오감이 센서이며, 눈은 물체를 식별하는 것으로 빛을 검출하고 귀는 소리를 듣는 것으로 압력과 음파를 검출하고, 코는 냄새로 가스나 온도를 검출하고, 혀는 맛으로 미각을 검출하고, 피부는 촉각에 의한 압력, 온도, 습도를 검출하며, 인간의 오감에 대응되지 않는 것으로 세라믹 센서는 자기장을 감지할 수 있다. 이와같이 센서는 용도에 따라 수많은 센서가 개발되어 그 종류가 대단히 많기 때문에 모든 센서에 대해서 기술한다는 것은 어렵다. 그러므로 여기서는 센서중에서 기본적인 가스센서와 습도센서에 대해 소개하기로 한다. 소개하기로 한다.

  • PDF

Reliability of Muscle Evaluation with a Tactile Sensor System (촉각센서를 이용한 근육평가의 신뢰도 조사)

  • Oh, Young-Rak;Lee, Dong-Ju;Kim, Sung-Hwan;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.337-344
    • /
    • 2005
  • A tactile sensor employs a piezoelectric element to detect contact frequency shifts and thereby measure the stiffness or softness of material such as tissue, which allows the sensor to be used in many fields of research for urology, cardiology, gynecology, sports medicine and caner detection and especially for cosmetics and skin care. In this study, reliability of the tactile sensor system was investigated with its manual application to the muscles susceptible to temporomandibular disorders. Stiffness and elasticity of anterior temporalis, masseter and trapezius muscles were calibrated bilaterally from 5 healthy men with an average of 24.5$\pm$0.94 years. The tactile sensor used in this study had a computer-controlled and motor-driven sensor unit which automatically pressed down on the skin surface over the muscles being measured and retracted, thereby providing the hysteresis curve. The slope of the tangent of the hysteresis curve (${\Delta}f/{\Delta}x$) is defined as stiffness of the muscle being measured and the distance between the two parts of the curve as its elasticity. To determine inter-examiner reliability, all the measurements were performed by the two examiners A and B, respectively and the same examination were repeated with an interval of 2 days for intra-examiner reliability. The results from this study demonstrated high reliability in measuring stiffness and elasticity of anterior temporalis, masseter and upper trapezius muscles using a tactile sensor system. It is suggested that the tactile sensor system can be a highly reproducible and effective instrument for quantitative evaluation of the muscle in head and neck region.