• Title/Summary/Keyword: 헬리컬 풍력터빈

Search Result 3, Processing Time 0.018 seconds

Design and stress analysis of composite helical rotor and wind power tree (복합재를 이용한 헬리컬 로터와 풍력터빈 나무 설계 및 구조해석)

  • Ha, Min-Su;Han, Kyoung-Tae;Choi, Kyoung-Ho;Park, Young-Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • The objective of this paper is to analyze the structure of the wind power tree using a helical type wind turbine. The blades of a helical rotor is designed with a composite material. The structural analyses of a helical rotor have been implemented by finite element method. The structural analyses of the wind power tree which support four helical rotor, have been performed under a wind load, a rotational velocity of a rotor, and dead weight.

Design and CFD study of 360 W class wind turbine tree in accordance with environmental scenery (주위 경관을 고려한 360 W급 풍력터빈나무 설계 및 유동해석)

  • Ha, Min-Su;Jung, Won-Hyuk;Choi, Nak-Joon;Park, Young-Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.78-84
    • /
    • 2013
  • The objective of this paper is to develop 360 W class wind turbine tree using a helical type wind turbine. The performance of 100 W class helical wind turbine which finished the conceptual design has been forecast through the CFD analysis. After performed the analysis of one wind turbine performance, four wind turbine have been installed at the structure of a tree type and then the change of a output data has been verified through the CFD analysis. In this study, the CFD results of a helical wind turbine tree have been shown by a velocity and pressure distribution. The result could obtain more than rated power 360 W through the CFD analysis.

A Study on Optimization of Tooth Micro-geometry for Wind Turbine High Speed Stage Helical Gear Pair (풍력터빈용 고속단 헬리컬 기어의 치형 최적화에 관한 연구)

  • Cho, Sungmin;Lee, Do-Young;Kim, Laesung;Cho, Sangpil;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.15-20
    • /
    • 2014
  • The wind industry grew in the first decade of the 21st century at rates consistently above 20% a year. For wind turbine, gearbox failure can be extremely costly in terms of repair costs, replacement parts, and in lost power production due to downtime. In this paper, gear tooth micro-modification for the high speed stage was used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox was firstly modeled in a software, and then the various combined tooth modification were presented, and the prediction of transmission under the loaded torque for the helical gear pair was investigated, the normal load distribution and root stress were also obtained and compared before and after tooth modification under one torque. The simulation results showed that the transmission error and normal load distribution under the load can be minimized by the appropriate tooth modification. It is a good approach where the simulated result is used to improve the design before the prototype is available for the test.