• Title/Summary/Keyword: 헬륨

Search Result 374, Processing Time 0.026 seconds

The Beat and Flow Analysis of the Liquid Helium for the Pressurization of Liquid Rocket Propellant Tank (액체로켓 추진제 탱크 가압용 액체헬륨의 열유동 해석)

  • 조기주;정영석;조인현;김용욱;이대성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.10-17
    • /
    • 2003
  • The steady and transient thermal and flow analysis for liquid helium using for the pressurization of liquid rocket propellant tanks have been conducted numerically. The required inner diameter of helium channel that satisfy the design mass flow rate and velocity, through the steady state analyses for various thermal conditions at the wall, is determined and it is found that due to the sign of Joule-Thomson coefficient of helium, the temperature of helium increase monotonically for adiabatic wall condition. The temporal behavior of helium temperature, density, velocity are also investigated under the existence of local heat inflow on the wall.

Effects of Helium Gas on the Articulators (헬륨(He)가스가 조음기관에 미치는 영향)

  • Lim, Soon-Yong;Lim, Sung-Su;Youn, Yong-Heum;Min, Ji-Sun;Song, Han-Sol;Kim, Bong-Hyun;Ka, Min-Kyoung;Cho, Dong-Uk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1082-1085
    • /
    • 2011
  • 기존에 잠수부가 사용하던 질소가스가 인체에 치명적인 공기 색전증을 유발하게 되면서 헬륨 산소혼합가스는 이를 극복하기 위한 대체 호흡용 가스로 사용되고 있다. 특히, 헬륨가스는 명료도가 낮은 squeaky voice를 유발하기 때문에 잠수부들의 비정상적인 음성에 대한 해석에 어려움이 많다. 또한, 헬륨가스는 일상생활에서 자주 접하는 것이며 다양한 TV프로에서도 헬륨가스를 마신 후 변하는 목소리를 통해 웃음을 전달하고 있다. 따라서 본 논문에서는 헬륨가스가 조음기관에 미치는 영향을 음성분석학적 요소의 적용을 통해 측정하는 연구를 수행하였다.

Determination of The Cryogenic Propellant Parameters at Pressurization of The Propulsion System Tank by Bubbling (버블링을 이용한 추진기관 가압 시스템에서 극저온 추진제 변수의 결정)

  • Bershadskiy Vitaly A.;Jung, Young-Suk;Lim, Seok-Hee;Cho, Gyu-Sik;Cho, Kie-Joo;Kang, Sun-Il;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a calculation method of the thermodynamic parameters of cryogenic propellant is proposed when a cryogenic propellant tank is pressurized by gaseous helium(GHe) bubbling. Temperature of cryogenic propellant and mass of dissolved GHe into propellant were analyzed at the various operation of pressurization of tile liquid oxygen(LOX) and hydrogen($LH_2$) tank using helium bubbling. It was evaluated how the GHe bubbling influences to the thermodynamic parameters of LOX and $LH_2$ with results of the analysis. With the proposed calculation method, It will be able to confirm the feasibility of GHe bubbling as a pressurization system of cryogenic propellant tank and to optimize the pressurization system using GHe bubbling.

CFD Analysis for Simulating Very-High-Temperature Reactor by Designing Experimental Loop (초고온가스로 모사 실험회로 설계를 위한 전산유체역학 해석)

  • Yoon, Churl;Hong, Sung-Deok;Noh, Jae-Man;Kim, Yong-Wan;Chang, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.553-561
    • /
    • 2010
  • A medium-scale helium loop that can simulate a VHTR (very-high-temperature reactor) is now under construction at the Korea Atomic Energy Research Institute. The heaters of the test helium loop electrically heat helium fluid up to $950^{\circ}C$ at pressures of 1 to 9 MPa. To optimize the design specifications of the experimental helium loop, the conjugate heat transfer in the high-temperature helium heater was analyzed by performing a CFD simulation. The analysis results indicate that the maximum temperature does not exceed the allowable limit. It is confirmed that the thermal characteristics of the loop with the given geometry satisfy the design requirements.

Development and Validation of Cryopanel Cooling System Using Liquid Helium for a Satellite Test (액체헬륨을 이용한 위성시험용 극저온패널 냉각시스템 개발 및 검증)

  • Cho, Hyok-Jin;Moon, Guee-Won;Seo, Hee-Jun;Lee, Sang-Hoon;Hong, Seok-Jong;Choi, Seok-Weon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.213-218
    • /
    • 2010
  • A cooling system utilizing liquid helium to chill the cryopanel (800 mm $\times$ 700 mm dimensions) down to 4.2 K was designed, implemented, and tested to verify the role of the cryopanel as a heat sink for the payload of a spacecraft inside the large thermal vacuum chamber (effective dimensions : 8 m ($\Phi$) $\times$ 10 m (L)) of KARI (Korea Aerospace Research Institute). Two LHe (Liquid Helium) Dewars, one for the main supply and the other for refilling, were used to supply liquid helium or cold helium gas into this cryopanel, and flow control for the target temperature of the cryopanel within requirements was done through fine adjustment of the pressure inside the LHe Dewars. The return helium gas from the cryopanel was reused as a thermal barrier to minimize the heat influx on the core liquid helium supply pipe. The test verified a cooling time of around three hours from the ambient temperature to 40 K (combined standard uncertainty of 194 mK), the capacity for maintaining the cryopanel at intermediate temperatures, and a 1 K uniformity over the entire cryopanel surface at around 40 K with 20 W cooling power.

Experimental Study of Liquid Oxygen Sub-cooling by Helium Injection (헬륨분사를 통한 액체산소 과냉각에 관한 실험적 연구)

  • Kwon Oh-Sung;Cho Nam-Kyung;Chung Yong-Gahp;Ha Seong-Up;Lee Joong-Youp;Kim Hyun-Joong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.179-182
    • /
    • 2005
  • Test of liquid oxygen sub-cooling by helium injection, which is one of the method of temperature conditioning of cryogenic propellant in liquid propulsion rocket, is performed. The sub-cooling effect at different He injection flow rate with the same initial liquid oxygen mass is compared. Test results showed liquid oxygen temperature decrease of $5\sim6^{\circ}C$ under test condition. And the required time for cooling is inversely proportional to He injection flow rate.

  • PDF

Nanocrystalline-Si Thin Film Deposited by Inductively Coupled Plasma Chemical Vapor Deposition (ICP-CVD) at $150^{\circ}C$ (극저온($150^{\circ}C$)에서 ICP-CVD로 증착한 Nanocrystalline-Si 박막)

  • Park, Snag-Geun;Han, Sang-Myeon;Shin, Kwang-Sub;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.12-14
    • /
    • 2005
  • Inductively Coupled Plasma Chemical Vapor Deposition(ICP-CVD)를 이용하여 공정온도 $150^{\circ}C$에서 Nanocrystalline silicon (nc-Si) 박막을 증착하였다. 실험에서 헬륨(He)가스, 수소($H_2$)가스 그리고 헬륨(He)과 수소($H_2$)의 혼합가스로 희석한 사일렌($SiH_4$)을 반응가스로 이용하였다. 이 혼합가스는 3sccm의 사일렌($SiH_4$)에 헬륨(He)과 수소($H_2$)의 주입율을 20sccm에서부터 60sccm까지 변화시켜 조건을 달리하여 사용했다. 증착한 Nc-Si 박막을 X-ray diffraction (XRD)으로 분석하여 각각의 조건에 대한 Nc-Si 박막의 속성을 연구하였다. 헬륨(He) 또는 수소($H_2$) 혼합가스의 주입율이 커지면서 <111>과 <222>의 최고점(peak)이 더 높아졌으며 결정화 되지 않고 비결정질로 남아 있는 성장층(incubation layer)이 얇아졌다. 이 결과는 nc-Si를 증착할 때 사용한 수소($H_2$) 플라즈마와 헬륨(He) 플라즈마의 효과로 설명할 수 있다. 실험을 통해 ICP-CVD로 증착한 nc-Si 박막을 박막 전계효과트랜지스터 (TFT)에서 우수한 특성의 전자수송층(active layer)으로 사용할 수 있는 것을 확인하였다.

  • PDF

Consideration on the helium leak detection in a large vacuum chamber (대형 진공용기의 헬륨 누설검사 방법에 대한 고찰)

  • In, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.235-243
    • /
    • 2007
  • Nowadays, in our country, large vacuum chambers for huge experimental facilities such as the tokamak fusion device, high power neural beam test stand, and space simulator have been constructed. In such a vacuum chamber of very large size, it is quite complicate to check on leakage quantitatively, while the probability of a leak is relatively high. To investigate the feasibility of applying reliably a helium leak detection to the huge vacuum chambers, and to find a reasonable methodology of choosing an optimum set-up for leak detection, several virtual constructions of the leak detection system have been analyzed by calculating the pressure distribution in the system and the helium level in the sensor part.

헬륨가스 분사에 의한 액체질소 냉각에 관한 연구

  • Chung, Yong-Gap;Cho, Nam-Gyeong;Kil, Kyeong-Seop;Song, Yi-Hwa;Kim, Yu;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.205-212
    • /
    • 2004
  • In this paper, to satisfy the temperature requirement of turbopump-inlet condition, the cooling of cryogenic propellant is performed at the simulated suction-line of the Launch Vehicle. The cooling method is by using gas helium injection. This paper investigates the effect of helium injection on liquid nitrogen, which simulates the liquid oxygen. By using helium injection, subcooling of liquid nitrogen can be achieved and in the condition of v/vL≒0.8min-¹ approximately in four minutes subcooling temperature can be achieved.

  • PDF

Investigation of helium injection cooling to liquid oxygen chamber (헬륨분사를 통한 액체산소 냉각의 이론적 고찰 및 해석과 시험의 비교)

  • Gwon, O-Seong;Jo, Nam-Gyeong;Jeong, Yong-Gap;Lee, Jung-Yeop
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.134-142
    • /
    • 2006
  • Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. In order to design the cooling system, understanding of the limitations of heat and mass transfer is required. In this paper, an analytical model for the helium injection system is presented. This model's main feature is the representation of bubbling system using finite-rate heat transfer and instantaneous mass transfer concept. With this simplified approach, the effect of helium injection to liquid oxygen system under several circumstances is examined. Experimental results along with simulations of single bubble rising in liquid oxygen and bubbling system are presented with various helium injection flow rates, and with change of oxygen chamber pressure.

  • PDF