• Title/Summary/Keyword: 행동필터

Search Result 71, Processing Time 0.026 seconds

Developing a Tool for Observing Instructions based on Learning Theory (학습이론에 기초한 수업분석 도구 개발)

  • Kang, Shin-Chun;Park, Jeong-Ae;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.275-278
    • /
    • 2013
  • Almost teachers have some basic questions about the effective teaching and learning. The purpose of this study is to develop an alternative tool to observe and analyze an instruction based on the learning theories providing the theoretical rationalities for learners to study not only in daily their life but also in their class and to apply it as an example. This study showed some suggestions analyzing an instruction theoretically through out some filters based on learning theories. Recently various learning theories have been studied and accumulated. This study developed an alternative tool to observe and analyze an instruction based on the Behaviorism, the Cognitivism and the Constructivism in the middle of these learning theories and it was applied to observe and analyze a actual class of the informatics subject. The expectation is for teachers to reflect or improve their classes using the alternative tool.

  • PDF

Development of virtual reality simulation game synchronized with real robot (로봇과 동기화된 가상현실 시뮬레이션 게임의 개발)

  • Shim, Jae-Youn;Yoo, Hwan-Soo;Sung, Hyun-Seong
    • Journal of Korea Game Society
    • /
    • v.18 no.4
    • /
    • pp.33-42
    • /
    • 2018
  • Virtual reality can user experience the virtual world of computer and stimulate user eyesight and emotions. HMD can acquire and stimulate user behavior and sensory information. In this paper, we propose a virtual reality game using robot control. Controlling the robots using various interfaces and synchronizing them with the virtual reality game. In this paper, we use OID mat for robot movement detection based optical code recognition and Kalman filter.

A Design of Multimedia Content Recommendation for Mobile Synchronization on Distributed System(P2P) (분산 P2P 환경에서 모바일 동기화 서비스를 통한 멀티미디어 콘텐츠 추천 시스템의 설계)

  • Kim, Ryong;Kim, Byeong-Man;Kim, Young-Kuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.390-393
    • /
    • 2007
  • 사용자들은 분산 P2P 환경을 통해 대량의 멀티미디어 콘텐츠를 쉽게 제공 밭을 수 있는 환경이 되었다. 또한 고용량 모바일 기기의 발전과 보급이 확산됨에 따라 사용자들은 사진, 음악, 동영상과 같은 멀티미디어 콘텐츠를 대량으로 휴대하며 이용할 수 있게 되었다. 그러나, 이러한 대량의 멀티미디어 콘텐츠 관리는 사용자 각자에게 맡겨져 있어 콘텐츠 관리를 어렵게 하고 있는 현실이다. 본 논문에서는 분산 P2P 환경에서 멀티미디어 콘텐츠의 공유와 추천을 통해 사용자에게 적합한 콘텐츠를 제공하고, 제공된 콘텐츠는 모바일 동기화 서비스를 통해 모바일 기기로 저장하고 관리되는 #분산 P2P 환경에서 모바일 동기화 서비스를 통한 멀티미디어 콘텐츠 추천 시스템#을 설계하고 실험하였다. 제안된 시스템은 사용자 선호 프로파일 정보로 협업 필터링을 통해 분산 P2P 환경에서 공유된 멀티미디어 콘텐츠 중에서 적합한 콘텐츠를 추천해 주고, 추천된 콘텐츠는 푸쉬 서비스를 통해 모바일 기기로 저장되며. 모바일 기기 사용자의 행동에 따라 모바일 동기화 서비스를 통해 사용자 모바일 기기의 콘텐츠를 관리한다. 이처럼 제안된 시스템은 콘텐츠 추천과 모바일 동기화 서비스로 능동적인 콘텐츠 관리를 제공하여 사용자에게 효율적인 콘텐츠 관리 기법과 활용 방법을 제공 할 수 있다.

  • PDF

Pattern Generation Technique for Network-based Intrusion Detection using Association Rules (연관 규칙을 이용한 네트워크 기반 침입 탐지 패턴생성 기술)

  • Soh, Jin;Lee, Sang-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.619-621
    • /
    • 2002
  • 네트워크 기반 컴퓨터 시스템은 현대사회에 있어서 매우 중요한 역할을 담당하고 있기 때문에 이들은 정보 범죄들로부터 안정적이면서 효율적인 환경을 제공하는 것은 매우 중요한 일이다. 현재의 침입탐지 시스템은 네트워크 상에서 지속적으로 처리되는 대량의 패킷에 대하여 탐지속도가 떨어지고, 새로운 침입유형에 대한 대응방법이나 인지능력에도 한계가 있기 때문이다. 따라서 다양한 트래픽 속에서 탐지율을 높이고 탐지속도를 개선하기 위한 방안이 필요하다. 본 논문에서는 침입탐지 능력을 개선하기 위해 먼저, 광범위한 침입항목들에 대한 탐지 적용기술을 학습하고, 데이터 마이닝 기법을 이용하여 침입패턴 인식능력 및 새로운 패턴을 생성하는 적용기술을 제안하고자 한다. 침입 패턴생성을 위해 각 네트워크에 돌아다니는 관련된 패킷 정보와 호스트 세션에 기록되어진 자료를 필터링하고, 각종 로그 화일을 추출하는 프로그램들을 활용하여 침입과 일반적인 행동들을 분류하여 규칙들을 생성하였다. 마이닝 기법으로는 학습된 항목들에 대한 연관 규칙을 찾기 위한 연역적 알고리즘을 이용하였다. 또한, 추출 분석된 자료는 리눅스기반의 환경 하에서 다양하게 모아진 네트워크 로그파일들을 본 논문에서 제안한 방법에 따라 적용한 결과이다.

  • PDF

희박한 고객 활동 데이터에서 최신성 기반 추천 성능 향상 연구

  • Baek, Sang-Hun;Kim, Ju-Yeong;An, Sun-Hong
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.781-784
    • /
    • 2019
  • 최근 AI를 산업 서비스에 적용하기 위해 많은 회사들이 활발히 연구를 하고 있다. 아마존과 넷플릭스 같은 거대 기업들은 이미 빅데이터와 AI 머신러닝을 이용한 추천 시스템을 구현하였고 아마존은 매출의 35%가 추천에 의해 발생하고 넷플릭스 75%의 사용자가 추천을 통해 영화를 선택한다고 보고되었다. 이러한 두 기업의 높은 추천 효율성의 이유는 협업 필터링(Collaborative filtering)과 같은 다양한 추천 알고리즘과 방대한 상품 및 고객 행동(구매, 시청 등) 데이터 등이 존재하고 있기 때문이다. 기계학습에서 알고리즘 학습을 위한 데이터의 양이 많지 않을 경우 알고리즘의 성능을 보장할 수 없다는 것이 일반적인 의견이다. 방대한 데이터를 가진 기업에서 추천 알고리즘을 적극적으로 활용 및 연구하고 있는 것도 이러한 이유 때문이다. 반면, 오프라인 및 여행사 기반에서 온라인 기반으로 영역을 차츰 확대하고 있는 항공 서비스 고객 데이터의 경우, 산업의 특성상 많은 회원에 비해 고객 1명당 온라인에서 활동하는 이력이 많지 않은 것이 특징이다. 이는, 추천 알고리즘을 통한 서비스 제공에서 큰 제약사항으로 작용한다. 본 연구에서는, 이러한 희박한 고객 활동 데이터에서 최신성 기반의 추천 시스템을 통하여 제약사항을 극복하고 추천 효율을 높이는 방법을 제안한다. 고객의 최근 접속 이력 로그를 시간 기준으로 데이터 셋을 분할하여 추천 알고리즘에 반영하였을 때, 추천된 노선에 대한 고객의 반응을 추천 성능 지표인 CTR(Click-Through Rate)로 측정하여 성능을 확인해 보았다.

Research on hybrid music recommendation system using metadata of music tracks and playlists (음악과 플레이리스트의 메타데이터를 활용한 하이브리드 음악 추천 시스템에 관한 연구)

  • Hyun Tae Lee;Gyoo Gun Lim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.145-165
    • /
    • 2023
  • Recommendation system plays a significant role on relieving difficulties of selecting information among rapidly increasing amount of information caused by the development of the Internet and on efficiently displaying information that fits individual personal interest. In particular, without the help of recommendation system, E-commerce and OTT companies cannot overcome the long-tail phenomenon, a phenomenon in which only popular products are consumed, as the number of products and contents are rapidly increasing. Therefore, the research on recommendation systems is being actively conducted to overcome the phenomenon and to provide information or contents that are aligned with users' individual interests, in order to induce customers to consume various products or contents. Usually, collaborative filtering which utilizes users' historical behavioral data shows better performance than contents-based filtering which utilizes users' preferred contents. However, collaborative filtering can suffer from cold-start problem which occurs when there is lack of users' historical behavioral data. In this paper, hybrid music recommendation system, which can solve cold-start problem, is proposed based on the playlist data of Melon music streaming service that is given by Kakao Arena for music playlist continuation competition. The goal of this research is to use music tracks, that are included in the playlists, and metadata of music tracks and playlists in order to predict other music tracks when the half or whole of the tracks are masked. Therefore, two different recommendation procedures were conducted depending on the two different situations. When music tracks are included in the playlist, LightFM is used in order to utilize the music track list of the playlists and metadata of each music tracks. Then, the result of Item2Vec model, which uses vector embeddings of music tracks, tags and titles for recommendation, is combined with the result of LightFM model to create final recommendation list. When there are no music tracks available in the playlists but only playlists' tags and titles are available, recommendation was made by finding similar playlists based on playlists vectors which was made by the aggregation of FastText pre-trained embedding vectors of tags and titles of each playlists. As a result, not only cold-start problem can be resolved, but also achieved better performance than ALS, BPR and Item2Vec by using the metadata of both music tracks and playlists. In addition, it was found that the LightFM model, which uses only artist information as an item feature, shows the best performance compared to other LightFM models which use other item features of music tracks.

An Analysis Method of User Preference by using Web Usage Data in User Device (사용자 기기에서 이용한 웹 데이터 분석을 통한 사용자 취향 분석 방법)

  • Lee, Seung-Hwa;Choi, Hyoung-Kee;Lee, Eun-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.189-199
    • /
    • 2009
  • The amount of information on the Web is explosively growing as the Internet gains in popularity. However, only a small portion of the information on the Web is truly relevant or useful to the user. Thus, offering suitable information according to user demand is an important subject in information retrieval. In e-commerce, the recommender system is essential to revitalize commercial transactions, raise user satisfaction and loyalty towards the information provider. The existing recommender systems are mostly based on user data collected at servers, so user data are dispersed over several servers. Therefore, web servers that lack sufficient user behavior data cannot easily infer user preferences. Also, if the user visits the server infrequently, it may be hard to reflect the dynamically changing user's interest. This paper proposes a novel personalization system analyzing the user preference based on web documents that are accessed by the user on a user device. The system also identifies non-content blocks appearing repeatedly in the dynamically generated web documents, and adds weight to the keywords extracted from the hyperlink sentence selected by the user. Therefore, the system establishes at an early stage recommendation strategies for the web server that has little user data. Also, user profiles are generated rapidly and more accurately by identifying the information blocks. In order to evaluate the proposed system, this study collected web data and purchase history from users who have current purchase activity. Then, we computed the similarity between purchase data and the user profile. We confirm the accuracy of the generated user profile since the web page containing the purchased item has higher correlation than other item pages.

An Online Review Mining Approach to a Recommendation System (고객 온라인 구매후기를 활용한 추천시스템 개발 및 적용)

  • Cho, Seung-Yean;Choi, Jee-Eun;Lee, Kyu-Hyun;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.17 no.3
    • /
    • pp.95-111
    • /
    • 2015
  • The recommendation system automatically provides the predicted items which are expected to be purchased by analyzing the previous customer behaviors. This recommendation system has been applied to many e-commerce businesses, and it is generating positive effects on user convenience as well as the company's revenue. However, there are several limitations of the existing recommendation systems. They do not reflect specific criteria for evaluating products or the factors that affect customer buying decisions. Thus, our research proposes a collaborative recommendation model algorithm that utilizes each customer's online product reviews. This study deploys topic modeling method for customer opinion mining. Also, it adopts a kernel-based machine learning concept by selecting kernels explaining individual similarities in accordance with customers' purchase history and online reviews. Our study further applies a multiple kernel learning algorithm to integrate the kernelsinto a combined model for predicting the product ratings, and it verifies its validity with a data set (including purchased item, product rating, and online review) of BestBuy, an online consumer electronics store. This study theoretically implicates by suggesting a new method for the online recommendation system, i.e., a collaborative recommendation method using topic modeling and kernel-based learning.

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.

Financial Products Recommendation System Using Customer Behavior Information (고객의 투자상품 선호도를 활용한 금융상품 추천시스템 개발)

  • Hyojoong Kim;SeongBeom Kim;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.111-128
    • /
    • 2023
  • With the development of artificial intelligence technology, interest in data-based product preference estimation and personalized recommender systems is increasing. However, if the recommendation is not suitable, there is a risk that it may reduce the purchase intention of the customer and even extend to a huge financial loss due to the characteristics of the financial product. Therefore, developing a recommender system that comprehensively reflects customer characteristics and product preferences is very important for business performance creation and response to compliance issues. In the case of financial products, product preference is clearly divided according to individual investment propensity and risk aversion, so it is necessary to provide customized recommendation service by utilizing accumulated customer data. In addition to using these customer behavioral characteristics and transaction history data, we intend to solve the cold-start problem of the recommender system, including customer demographic information, asset information, and stock holding information. Therefore, this study found that the model proposed deep learning-based collaborative filtering by deriving customer latent preferences through characteristic information such as customer investment propensity, transaction history, and financial product information based on customer transaction log records was the best. Based on the customer's financial investment mechanism, this study is meaningful in developing a service that recommends a high-priority group by establishing a recommendation model that derives expected preferences for untraded financial products through financial product transaction data.