• Title/Summary/Keyword: 행동필터

Search Result 71, Processing Time 0.027 seconds

An Android App Development - 'Noonchi Coaching' Which has function of recommendation based on machine learning (기계 학습형 사용자 맞춤 추천 앱 '눈치 코칭_문화' 개발)

  • Jeon, Jae Hwan;Lee, dae young;Kang, Hyun-Kyu
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.242-247
    • /
    • 2017
  • 본 논문은 공공 데이터 Open API와 사용자의 과거 행동과 주변 상황정보를 토대로 사용자가 선호하는 문화를 맞춤 추천하는 어플리케이션인 '눈치 코칭_문화'의 설계 및 구현에 대하여 서술한다. '눈치 코칭_문화'는 사용자가 쉽게 문화를 추천 받을 수 있도록 만들어진 어플리케이션으로 기존의 필터링 방식으로 사용자가 검색하는 방식의 어플리케이션들과 달리 사용자의 주변 상황과 사용자의 취향 분석을 통해 최적의 문화 Contents를 어플리케이션을 통해 제공한다. 사용자의 별도의 상세검색이나 검색, 좋아요 기능, 주변 위치와 같은 상황 정보를 어플리케이션 사용 로그를 저장 후 데이터 전처리를 하여 사용자에게 다시금 피드백 되는 어플리케이션이다. 지속적인 알림을 통해 사용자에게 문화를 추천하도록 만들었다. 또한, 사용자에게 문화의 날 정보와 사용자 주변 위치의 문화센터를 추천하여 사용자의 문화 활동을 지향한다.

  • PDF

The research on using personalization technology situations recognition-based TV application service (개인화기술을 응용한 상황인식 기반 TV 응용 서비스에 관한 연구)

  • Yoon, Seok-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.75-79
    • /
    • 2011
  • 본 논문에서는 센서를 활용하여 개인의 위치 및 상황 정보를 수집하고 패턴을 분석하여 이에 따라 동적으로 서비스를 제공하는 상황인식 TV 프로그램 추천 및 제어 시스템(CAPUS)을 제안하였다. 상황인식기반 TV 응용서비스를 위하여 개인화(Personalization)기술에 적용을 할 수 있는 사례로 TV채널 추천을 예로 실험하였다. CAPUS는 유비쿼터스의 큰 축이라 할 수 있는 개인화기술을 구현할 수 있는 시스템으로 그 규모가 무척 크며 방대하다 할 수 있다. 본문에서 제안한 CAPUS는 사용자의 정보를 수집하는 에이전트, 분석하는 에이전트, 필터링하는 에이전트 등 다양한 소프트웨어와 알고리즘이 필요하다. 사용자의 정보를 동적으로 수집 및 분석하고 생성한 후에 이를 활용하여 사용자에게 다시 서비스를 제공하는 기술이 CAPUS의 핵심이라 할 수 있다. 데이터의 분석을 통해 비슷한 행동이나 상황을 파악할 수 있으며 사용자에게 맞는 서비스를 제공할 수 있게 된다.

  • PDF

Emotional Text-to-Speech System for Artificial Life Systems (인공생명체의 감정표현을 위한 음성처리)

  • 장국현;한동주;이상훈;서일홍
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2252-2255
    • /
    • 2003
  • 인간과 인공생명체(Artificial Life Systems)가 서로 커뮤니케이션을 진행하기 위하여 인공생명체는 자신이 의도한 바를 음성, 표정, 행동 등 다양한 방식을 통하여 표현할 수 있어야 한다. 특히 자신의 좋아함과 싫음 등 자율적인 감정을 표현할 수 있는 것은 인공생명체가 더욱 지능적이고 실제 생명체의 특성을 가지게 되는 중요한 전제조건이기도 하다. 위에서 언급한 인공생명체의 감정표현 특성을 구현하기 위하여 본 논문에서는 음성 속에 감정을 포함시키는 방법을 제안한다. 먼저 인간의 감정표현 음성데이터를 실제로 구축하고 이러한 음성데이터에서 감정을 표현하는데 사용되는 에너지, 지속시간, 피치(pitch) 등 특징을 추출한 후, 일반적인 음성에 위 과정에서 추출한 감정표현 특징을 적용하였으며 부가적인 주파수대역 필터링을 통해 기쁨, 슬픔, 화남, 두려움, 혐오, 놀람 등 6가지 감정을 표현할 수 있게 하였다. 감정표현을 위한 음성처리 알고리즘은 현재 음성합성에서 가장 널리 사용되고 있는 TD-PSOLA[1] 방법을 사용하였다.

  • PDF

Implementation of Java-based Personal Web Information Gathering Agent (자바 기반 개인용 웹 정보 수집 에이전트의 구현)

  • 박민규;한정기;유태명;김중섭;최석민;김준태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.186-188
    • /
    • 1998
  • 본 논문에서는 웹에서 사용자의 취향에 부합하는 정보를 지속적으로 수집하여 추천해주는 지능적인 개인용 웹 정보 수집 에이전트의 구현에 대하여 기술한다. 본 논문에서 구현한 에이전트 시스템은 자바언어로 구현되었으며, 인터넷에서 페이지를 모아오는 수집 단계, HTML 문서 색인 단계, 필터링 단계, 사용자가 모니터링 단계, 학습 단계 등 다섯 단계로 구성되어 있다. 웹 페이지는 기존의 검색 엔진으로부터 수집하도록 하였으며, 사용자의 관심에 부합되는 웹 페이지들을 추천하고, 추천된 페이지들에 대한 사용자의 행동을 모니터링하여 사용자의 취향을 학습함으로써 사용자 프로파일을 재구성한다. 본 웹 에이전트 시스템은 암시적인 피드백에 의한 학습을 수행하고 백그라운드에서 동작함으로써 사용자에게 기존의 검색 작업에 따른 시간과 수고를 덜어 주었다.

  • PDF

Collaborative Filtering Using Topic Models for Rating Based Recommender Systems (평점 기반 추천시스템을 위한 토픽 모델 협업필터링)

  • Kim, Kwang-Seob;Jung, Ho-Gyeong;Lee, Hyun-Jong;Lee, Hyung-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.381-383
    • /
    • 2012
  • 협업필터링은 지금까지 많은 추천시스템 연구에서 비교대상이 되거나 더 좋은 추천시스템 방법론을 개발하기 위해서 응용되고 있다. 일반적으로 협업필터링 기법은 명시적으로 관찰된 사용자들의 행동을 기반하는 방법이다. 본 연구에서는 LDA(Latent Dirichlet Allocation)을 이용해 사용자와 추천 대상이 되는 아이템의 숨겨진 특성을 추출하고, 이를 협업필터링기법에 응용했다. 영화 추천시스템 구축을 위한 실험에서, 사용자의 선호도는 다양한 영화 장르를 선호하는 비율로 나타난다는 가정(사용자기반)과 영화 또한 장르의 비율로 표현이 된다는 가정(아이템기반)을 했다. 이러한 가정을 토대로 사용자 사이와 영화 사이 간의 유사도를 정의하고, 협업필터링에 적용했을 때, 전통적인 협업필터링 기법보다 뛰어난 결과를 얻을 수 있었다.

통계적 척도 선택 방법에 따른 네트워크 침입 분류의 성능 비교

  • Mun, Gil-Jong;Kim, Yong-Min;Noh, Bong-Nam
    • Review of KIISC
    • /
    • v.19 no.2
    • /
    • pp.16-25
    • /
    • 2009
  • 네트워크 기술의 발달에 따른 서비스의 증가는 네트워크 트래픽과 함께 취약점도 증대하여 이를 악용하는 행위도 늘어나고 있다. 따라서 네트워크 침입탐지 시스템은 증가하는 트래픽의 양을 처리할 수 있어야 하며, 악의적인 행동을 효과적으로 탐지 할 수 있어야 한다. 증가하는 트래픽을 효과적으로 처리하고 탐지의 정확성을 높이기 위해 처리 데이터를 감소시키는 기술이 요구된다. 이러한 방법들은 크게 데이터 필터링, 척도 선택, 데이터 클러스터링의 영역으로 구분되며, 본 논문에서는 척도 선택의 방법으로 데이터 처리의 감소 및 효과적 침입탐지를 수행할 수 있음을 보이고자 한다. 실험 데이터는 KDDCUP 99 데이터 셋을 이용하였으며, 통계적 척도선택의 방법으로 분류율, 오탐율, 거리값, 규칙, 선택된 척도 등을 제시함으로써 침입 탐지 시 데이터 처리량이 감소하였고, 분류율은 증가, 오탐율은 감소하여 침입 탐지 정확성이 높아짐을 알 수 있었다. 또한 본 논문에서 제시한 방법이 다른 관련연구에서 제시한 선택 척도보다 높은 정확성을 보임으로써 보다 유용함을 증명할 수 있었다.

Generating Technology of the Association Rule for Analysis of Audit Data on Intrusion Detection (침입탐지 감사자료 분석을 위한 연관규칙 생성 기술)

  • Soh, Jin;Lee, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2002.11b
    • /
    • pp.1011-1014
    • /
    • 2002
  • 최근 대규모 네트워크 데이터에 대한 패턴을 분석하기 위한 연구에 대하여 관심을 가지고 침입탐지 시스템을 개선하기 위해 노력하고 있다. 특히, 이러한 광범위한 네트워크 데이터 중에서 침입을 목적으로 하는 데이터에 대한 탐지 능력을 개선하기 위해 먼저, 광범위한 침입항목들에 대한 탐지 적용기술을 학습하고, 그 다음에 데이터 마이닝 기법을 이용하여 침입패턴 인식능력 및 새로운 패턴을 빠르게 인지하는 적용기술을 제안하고자 한다. 침입 패턴인식을 위해 각 네트워크에 돌아다니는 관련된 패킷 정보와 호스트 세션에 기록되어진 자료를 필터링하고, 각종 로그 화일을 추출하는 프로그램들을 활용하여 침입과 일반적인 행동들을 분류하여 규칙들을 생성하였으며, 생성된 새로운 규칙과 학습된 자료를 바탕으로 침입탐지 모델을 제안하였다. 마이닝 기법으로는 학습된 항목들에 대한 연관 규칙을 찾기 위한 연역적 알고리즘을 이용하여 규칙을 생성한 사례를 보고한다. 또한, 추출 분석된 자료는 리눅스 기반의 환경 하에서 다양하게 모아진 네트워크 로그파일들을 분석하여 제안한 방법에 따라 적용한 산출물이다.

  • PDF

Personalized Recommendation System Using User and Item Properties (사용자와 상품의 특성을 이용한 개인화 추천 시스템)

  • Yoon-Hye Kim;Jehwan Oh;Eunseok Lee
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.782-784
    • /
    • 2008
  • 급속하게 확산된 비즈니스 웹 사이트로 인해 웹상에 상품의 정보가 기하급수적으로 증가하여 정보 과부하 문제가 발생하였다. 이를 극복하기 위해 내용 기반 추천 시스템, 협업 필터링 추천 시스템 등의 개인화 추천 시스템이 발전했으나 사용자의 성향과 아이템의 성향을 반영하지 못하고 있다. 본 연구에서는 웹상에서 사용자의 행동을 관찰하여 상품의 구매경로와 판매의 상관관계에 따라 각 사용자의 성향과 그룹의 성향, 아이템의 성향을 측정한 뒤 벡터의 내적을 이용하여 사용자의 성향에 가장 적합한 상품의 유사도를 계산하고 추천하는 시스템을 제안한다.

A Study on Micro Clustering Technology for Breeding Pig Behavior Analysis (모돈 행동 특성 분석을 위한 마이크로 클러스터링 기술 연구)

  • Cho, Jinho;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.165-165
    • /
    • 2017
  • 모돈은 사육 특성상 제한된 파일롯 공간 안에 장시간 머물기 때문에 과중한 몸무게에 의한 지제 이상, 섭식 등의 불량, 수면상태의 불량 등을 지속적으로 관찰해야 하는 대상이다. 측면에 다수의 초음파 센서를 설치하여 기립의 상태 및 운동 시 몸체 궤적의 특성을 분석하여 종합적으로 모돈의 행동 특성을 정량화 하고자 하였다. 이 과정에서 계측 신호의 값을 대수적으로 비교하는 방식에 한계가 있음을 발견하였고, 이를 해결하고자 10 Hz/Ch 내외의 시계열 상대거리 궤적 신호를 주파수 도메인으로 변경하여 분석을 수행하였다. 일정 주파수에 집중되어 있는 주파수 값의 크기 변화(파워 스펙트럼 밀도)를 기준으로 모돈의 움직임의 정상 상태 유무 판별이 가능하였다. 단, 이러한 분석은 계측 데이터를 일괄 처리 방식으로 분석하는 방법으로 도출이 되었으므로, 계측과 정량 분석을 동시에 수행하기 위한 개선이 필요하였다. 계측 시스템에서 사용한 마이크로 프로세서는 Nucleo-446(STMelectronics, CA, USA)로 180 Mhz의 클럭 속도로 작동하나, 총 100 Hz 내외의 16비트 계측 신호에 대해 추가적으로 FFT 등의 주파수 변환 신호 처리를 수행하기에는 연산 능력이 부족하였다. 한편, 주파수 분석의 주기를 1분 단위로 할 경우 처리해야할 정보의 크기는 $100{\times}60{\times}5{\times}2Byte$ 이므로 1분 내에 해당 연산을 종료할 수 있는 추가의 연산 장치가 필요하였다. 계측과 주파수 도메인 변환 연산을 동시에 수행하기 위하여 1 Ghz의 연산능력을 가진 ARM A9 계열의 초소형 멀티코어 AP인 NanoPi Neo Air(Friendlyarm, Guangzhou, China)을 선정하였다. 4개의 코어를 각각 계측, Median 필터링, Smoothing 연산, FFT 분석에 사용하여 1분 단위, 2분 단위, 5분 단위의 주파수 분석을 동시에 수행하였다. 병렬 연산 라이브러리는 오픈 소스인 MPICH(www.mpich.org)를 이용하였다. 상대적으로 여유있는 자원을 보유하고 코어를 실시간으로 결정하여 다수의 모돈 개체 동시 모니터링을 위한 네트워크 연결 역할을 동시에 수행하도록 하였다. 1주일 내외의 요인 실험 수행 결과, 약 70 Mbyte의 데이터가 축적이 되었으며, 1분 단위, 2분 단위, 5분 단위의 주파수 도메인 변환 후 결과를 동시에 취득할 수 있었다. 일부 주파수 도메인 상의 파워 밀도 값이 모돈의 행동 특성에 분석에 유효한 정보를 제공함을 발견하였다. 모돈사 내 현장 보급이 가능한 초소형 AP와 멀티 코어 기반 병렬 처리 기법을 이용한 현장 진단 시스템 개발 연구를 지속적으로 수행할 것이다.

  • PDF

A Consumer Perception based on the Type of Recommender System : A Privacy Calculus Perspective (상품 추천 서비스 유형에 따른 소비자 반응 연구 : 프라이버시 계산 모델을 중심으로)

  • Choi, Hye-Jin;Cho, Chang-Hoan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.254-266
    • /
    • 2020
  • The purpose of this study is to analyze the influence of the type of recommender system on consumer's perceived benefit and privacy risk. The result showed that the perceived usefulness and intension to click was high in the order of Hybrid-filtering, Bestseller, and SNS-based system. Privacy concern was high in order of SNS-based system, Hybrid-filtering, and Bestseller. Moderating effects of perceived personalization on the type of recommender system and perceived usefulness were significant. Finally perceived usefulness had positive effect, and privacy concern had negative effect on consumer's intension to click. This study has significant implications for digital marketing bt comparing consumer responses according to the type of recommended service. The result of this study can be helpful for providing and developing future recommender service.