• Title/Summary/Keyword: 핵의학 영상검사

Search Result 328, Processing Time 0.027 seconds

Fusion of Gamma and Realistic Imaging (감마영상과 실사영상의 Fusion)

  • Kim, Yun-Cheol;Yu, Yeon-Uk;Seo, Young-Deok;Moon, Jong-Woon;Kim, Yeong-Seok;Won, Woo-Jae;Kim, Seok-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.78-82
    • /
    • 2010
  • Purpose: Recently, South Korea has seen a rapidly increased incidence of both breast and thyroid cancers. As a result, the I-131 scan and lymphoscintigraphy have been performed more frequently. Although this type of diagnostic imaging is prominent in that visualizes pathological conditions, which is similar to previous nuclear diagnostic imaging techniques, there is not much anatomical information obtained. Accordingly, it has been used in different ways to help find anatomical locations by transmission scan, however the results were unsatisfactory. Therefore, this study aims to realize an imaging technique which shows more anatomical information through the fusion of gamma and realistic imaging. Materials and Methods: We analyzed the data from patients who were examined by the lymphoscintigraphy and I-131 additional scan by Symbia Gamma camera (SIEMENS) in the nuclear medicine department of the National Cancer Center from April to July of 2009. First, we scanned the same location in patients by using a miniature camera (R-2000) in hyVISION. Afterwards, we scanned by gamma camera. The data we obtained was evaluated based on the scanning that measures an agreement of gamma and realistic imaging by the Gamma Ray Tool fusion program. Results: The amount of radiation technicians and patients were exposed was generated during the production process of flood source and applied transmission scan. During this time, the radiation exposure dose of technicians was an average of 14.1743 ${\mu}Sv$, while the radiation exposure dose of patients averaged 0.9037 ${\mu}Sv$. We also confirmed this to matching gamma and realistic markers in fusion imaging. Conclusion: Therefore, we found that we could provide imaging with more anatomical information to clinical doctors by fusion of system of gamma and realistic imaging. This has allowed us to perform an easier method in which to reduce the work process. In addition, we found that the radiation exposure can be reduced from the flood source. Eventually, we hope that this will be applicable in other nuclear medicine studies. Therefore, in order to respect the privacy of patients, this procedure will be performed only after the patient has agreed to the procedure after being given a detailed explanation about the process itself and its advantages.

  • PDF

Radiologic Diagnosis of Gastrointestinal Bleeding (위장관 출혈의 영상의학적 진단법)

  • Se Hyung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.3
    • /
    • pp.520-535
    • /
    • 2023
  • Gastrointestinal (GI) bleeding is not a single disease but a symptom and clinical manifestation of a broad spectrum of conditions in the GI tract. According to its clinical presentation, GI bleeding can be classified into overt, occult, and obscure types. Additionally, it can be divided into upper and lower GI bleeding based on the Treitz ligament. Variable disease entities, including vascular lesions, polyps, neoplasms, inflammation such as Crohn's disease, and heterotopic pancreatic or gastric tissue, can cause GI bleeding. CT and conventional angiographies and nuclear scintigraphy are all radiologic imaging modalities that can be used to evaluate overt bleeding. For the work-up of occult GI bleeding, CT enterography (CTE) can be the first imaging modality. For CTE, an adequate bowel distention is critical for obtaining acceptable diagnostic performance as well as minimizing false positives and negatives. Meckel's scintigraphy can be complementarily useful in cases where the diagnosis of CTE is suboptimal. For the evaluation of obscured GI bleeding, various imaging modalities can be used based on clinical status and providers' preferences.

A Research of Standards for Radiopharmaceutical Doses in Pediatric Nuclear Medicine (소아 핵의학 검사 시 사용되는 방사성의약품의 양 산출 기준 조사)

  • Do, Yong-Ho;Kim, Gye-Hwan;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.47-50
    • /
    • 2009
  • Purpose: Presently, any exact standard of radiopharmaceutical doses in pediatric nuclear medicine doesn't exist in the universe. So hospitals are following by manual of vial kit or guidelines of America and Europe based on recommended adult doses adjusted for body mass (MBq/kg) or body surface area (MBq/$m^2$). However, especially for children younger than 1 year and heavier than 50 kg, it's hard to estimate exact dosage for those children. Materials and Methods: In order to obtain objective data of multipliers for pediatric studies, we surveyed 4 major hospitals in Korea. After receiving feedbacks, we changed dosage to multiplier. And we compared multipliers of Korea to America's and Europe's. Results: Most hospitals in Korea are following by body mass formula (MBq/kg). On the other hand, standards don't include proper factors for a child younger than 1 year and heavier than 50 kg. Multipliers for 3 kg children who are injected lower doses than needed are America:0.12, Europe:0.09, Korea:0.05, multipliers for 30 kg children who are injected proper doses are America:0.58, Europe:0.51, Korea:0.45 and multipliers for 60 kg children who are injected more doses than needed are America:0.95, Europe:0.95, Korea:0.91. Conclusions : Through the survey, when calculating doses for children, usually output doses are based on adult doses adjusted for body mass (MBq/kg) but research has shown that standards of all of the compared standards don't reflect exact multipliers for children younger than 1 year and heavier than 50 kg. Therefore, we should give an effort to reduce needless radiation exposure in children by establishing a proper doses standard and also developing better image reconstruction software.

  • PDF

The Evaluation of Usefulness of Pixelated Breast-Specific Gamma Imaging in Thyroid scan (Pixelated Breast-Specific Gamma Imaging(BSGI) 감마 카메라를 이용한 갑상선 검사의 유용성 평가)

  • Jung, Eun-Mi;Seong, Ji-Hye;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.90-93
    • /
    • 2011
  • Purpose: A Pixelated BSGI gamma camera has features to enhance resolution and sensitivity and minimize the distance between detector and organs by narrow FOV. Therefore, it is known as useful device to examine small organs such as thyroid, parathyroid and gall bladder. In general, when we would like to enlarge the size of images and obtain high resolution images by gamma camera in nuclear medicine study, we use pinhole collimator. The purpose of this study is to evaluate the usefulness of Pixelated BSGI gamma camera and to compare to it using pinhole collimator in thyroid scan which is a study of typical small organs. Materials and methods: (1) The evaluation of sensitivity and spatial resolution: We measured sensitivity and spatial resolution of Pixelated BSGI with LEHR collimator and Infinia gamma camera with pinhole collimator. The sensitivity was measured by point source sensitivity test recommended by IAEA. We acquired images considering dead time in BSGI gamma camera for 100 seconds and used $^{99m}TcO4-\;400{\mu}Ci$ line source. (2) The evaluation of thyroid phantom: The thyroid phantom was filled with $^{99m}TcO4-$. After set 300 sec or 100 kcts stop conditions, we acquired images from both pixelated BSGI gamma camera and Infinia gamma camera with LEHR collimator. And we performed all thyroid studies in the same way as current AMC's procedure. Results: (1) the result of sensitivity: As a result, the sensitivity and spatial resolution of pixelated BSGI gamma camera were better than Infinia's. The sensitivities of pixelated BSGI and Infinia gamma camera were $290cps/{\mu}Ci$ and $350cps/{\mu}Ci$ respectively. So, the sensitivity of pixelated BSGI was 1.2 times higher than Infinia's (2) the result of thyroid phantom: Consequently, we confirmed that images of Pixelated BSGI gamma camera were more distinguishable between hot and cold spot compared with Infinia gamma camera. Conclusion: A pixelated BSGI gamma camera is able to shorten the acquisition time. Furthermore, the patients are exposed to radiation less than before by reducing amount of radiopharmaceutical doses. Shortening scan time makes images better by minimizing patient's breath and motion. And also, the distance between organ and detector is minimized because detector of pixelated BSGI gamma camera is small and possible to rotate. When patient cannot move at all, it is useful since device is feasible to move itself. However, although a pixelated BSGI gamma camera has these advantages, the effect of dead time occurs over 2000 cts/s since it was produced only for breast scan. So, there were low concentrations in organ. Therefore, we should consider that it needs to take tests to adjust acquisition time and amount of radiopharmaceutical doses in thyroid scan case with a pixelated BSGI gamma camera.

  • PDF

Classification of submitted KSNMT dissertation (대한핵의학기술학회 투고 논문 분류)

  • Han, Dong-Chan;Lee, Hyuk;Hong, Gun-Chul;Ahn, Byeong-Ho;Choi, Seong-Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.65-69
    • /
    • 2017
  • Purpose KSNMT(Korea Society of Nuclear Medicine Technology) stepping first step in 1997, has published first journal related with nuclear medicine technology in 1985. With classifying In Vivo Session Dissertation reported in the entire journal, trend of the Dissertation will be studied. Materials and Methods Dissertations which published from 1985 to first half of 2016 in the journal are classified with presentation form and with scanner, And all the data is organized with Excel program. Through the data, the number of dissertations published in each year, the number of dissertation published in details, and keyword distributions in each period are analyzed. Results The number of In-vivo section dissertations was 1151 and the number of In-vivo section dissertations that have common subject with In-vitro section was 28. The number of In-vivo section dissertation in 1980s was 46, in 1990s was 149, in 2000 was 467 and from 2010 to the first half of 2016 was 517. The number of dissertation with original articles was 571, with abstract was 529, with symposium was 31, with special lecture was 25, with review was 11, with interesting image was 7, with poster was 3 and with case report was 2. With symposium and special lecture excluded, which count 56, the number of dissertation with PET was 319, with Planar was 302, with SPECT was 172, with radiopharmaceutical was 113, with guard and safety management 103, with BMD was 28, etc. was 86. The number of dissertation about oncology was 201, about scanner was 179, about cardiovascular and circulatory system was 102, about safe environment was 82, about musculoskeletal system was 76, about nervous nuclear medicine was 66, about quality assurance was 61, about genitourinary system was 56, about endocrine system was 49, about digestive system was 44, about Therapy, about industrial safety was 24, about molecular imaging was 15, infection and inflammation was 9, about respiratory system was 8 and etc. was 108. The mostly used keyword through 1999 to 2005 was PET and through 2006 to 2016 was PET/CT. Conclusion To encourage various dissertations to be submitted, Korea Society of Nuclear Medicine should analyze date about not only about dissertations that are already published, but also about various research materials. Moreover, Korea Society of Nuclear Medicine also have to provide technical support such as sharing big data from homepage and systematical support to its member to publish dissertation that has high impact factor. It is important each individual researcher to have continuing effort as well as each organization cooperation.

  • PDF

The Understanding and Application of Noise Reduction Software in Static Images (정적 영상에서 Noise Reduction Software의 이해와 적용)

  • Lee, Hyung-Jin;Song, Ho-Jun;Seung, Jong-Min;Choi, Jin-Wook;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • Purpose: Nuclear medicine manufacturers provide various softwares which shorten imaging time using their own image processing techniques such as UlatraSPECT, ASTONISH, Flash3D, Evolution, and nSPEED. Seoul National University Hospital has introduced softwares from Siemens and Philips, but it was still hard to understand algorithm difference between those two softwares. Thus, the purpose of this study was to figure out the difference of two softwares in planar images and research the possibility of application to images produced with high energy isotopes. Materials and Methods: First, a phantom study was performed to understand the difference of softwares in static studies. Various amounts of count were acquired and the images were analyzed quantitatively after application of PIXON, Siemens and ASTONISH, Philips, respectively. Then, we applied them to some applicable static studies and searched for merits and demerits. And also, they have been applied to images produced with high energy isotopes. Finally, A blind test was conducted by nuclear medicine doctors except phantom images. Results: There was nearly no difference between pre and post processing image with PIXON for FWHM test using capillary source whereas ASTONISH was improved. But, both of standard deviation(SD) and variance were decreased for PIXON while ASTONISH was highly increased. And in background variability comparison test using IEC phantom, PIXON has been decreased over all while ASTONISH has shown to be somewhat increased. Contrast ratio in each spheres has also been increased for both methods. For image scale, window width has been increased for 4~5 times after processing with PIXON while ASTONISH showed nearly no difference. After phantom test analysis, ASTONISH seemed to be applicable for some studies which needs quantitative analysis or high contrast, and PIXON seemed to be applicable for insufficient counts studies or long time studies. Conclusion: Quantitative values used for usual analysis were generally improved after application of the two softwares, however it seems that it's hard to maintain the consistency for all of nuclear medicine studies because result images can not be the same due to the difference of algorithm characteristic rather than the difference of gamma cameras. And also, it's hard to expect high image quality with the time shortening method such as whole body scan. But it will be possible to apply to static studies considering the algorithm characteristic or we can expect a change of image quality through application to high energy isotope images.

  • PDF

Usefulness of $^{99m}Tc$-labeled RBC Scan and SPECT in the Diagnosis of Head and Neck Hemangiomas (두경부 혈관종 진단시 $^{99m}Tc$-RBC Scan and SPECT 검사의 유용성)

  • Oh, Shin-Hyun;Roh, Dong-Wook;Ahn, Sha-Ron;Park, Hoon-Hee;Lee, Seung-Jae;Kang, Chun-Goo;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • Purpose: There are various methods to diagnose hemangioma, such as ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine. However, by development of SPECT imaging, the blood-pool scan using $^{99m}Tc$-labeled red blood cell has been used, because it was non-invasive and the most economical method. Therefore, in this study, we proposed that the usefulness of $^{99m}Tc$-RBC scan and SPECT of the head and neck to diagnose unlocated hemangiomas. Materials and Methods: $^{99m}Tc$-RBC scan and SPECT was performed on 6 patients with doubtful hemangioma (4 person, head; 1 person, neck; 1 person, another). We labeled radiopharmaceutical using modified in vivo method and then, centrifuged it to remove plasma. After a bolus injection of tracer, dynamic perfusion flow images were acquired. Then, anterior, posterior, both lateral static blood-pool images were obtained as early and 4 hours delayed. SPECT was progressed 64 projections per 30 seconds. Each image was interpreted by physicians, Nuclear medicine specialist, and technologist blinded to patient's data. Results: In 5 patients of all the radioactivity of doubtful site didn't change in flow images, but, in blood-pool, delayed and SPECT images, it was increased. So, it was a typical hemangioma finding. The size of lesion was over 2 cm, and it could discriminate as comparing to the delayed and SPECT imaging. On the other hand, in 1 patient, the radioactivity was increased in blood-pool images, but, not in delayed and SPECT images, so, it was proved no hemangioma. Conclusion: Using $^{99m}Tc$-RBC Scan and SPECT, we could diagnose the hemangiomas in head and neck, as well as, liver, more non-invasive, economical, and easy. Therefore, it considered that $^{99m}Tc$-RBC scan and SPECT would offer more useful information for diagnosis of hemangioma, rather than otherimaging such as US, CT, MRI.

  • PDF

Comparative Evaluation of 18F-FDG Brain PET/CT AI Images Obtained Using Generative Adversarial Network (생성적 적대 신경망(Generative Adversarial Network)을 이용하여 획득한 18F-FDG Brain PET/CT 인공지능 영상의 비교평가)

  • Kim, Jong-Wan;Kim, Jung-Yul;Lim, Han-sang;Kim, Jae-sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.15-19
    • /
    • 2020
  • Purpose Generative Adversarial Network(GAN) is one of deep learning technologies. This is a way to create a real fake image after learning the real image. In this study, after acquiring artificial intelligence images through GAN, We were compared and evaluated with real scan time images. We want to see if these technologies are potentially useful. Materials and Methods 30 patients who underwent 18F-FDG Brain PET/CT scanning at Severance Hospital, were acquired in 15-minute List mode and reconstructed into 1,2,3,4,5 and 15minute images, respectively. 25 out of 30 patients were used as learning images for learning of GAN and 5 patients used as verification images for confirming the learning model. The program was implemented using the Python and Tensorflow frameworks. After learning using the Pix2Pix model of GAN technology, this learning model generated artificial intelligence images. The artificial intelligence image generated in this way were evaluated as Mean Square Error(MSE), Peak Signal to Noise Ratio(PSNR), and Structural Similarity Index(SSIM) with real scan time image. Results The trained model was evaluated with the verification image. As a result, The 15-minute image created by the 5-minute image rather than 1-minute after the start of the scan showed a smaller MSE, and the PSNR and SSIM increased. Conclusion Through this study, it was confirmed that AI imaging technology is applicable. In the future, if these artificial intelligence imaging technologies are applied to nuclear medicine imaging, it will be possible to acquire images even with a short scan time, which can be expected to reduce artifacts caused by patient movement and increase the efficiency of the scanning room.

Usefulness of Breast Lymphoscintigraphy after Whole Body Bone Scan (유방암 환자에서 전신 뼈 검사 후 감시림프절 위치 파악 검사의 유용성)

  • Jang, Dong-Gun;Bahn, Young-Kag;Chung, Seok;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.133-137
    • /
    • 2010
  • Purpose: Breast cancer is known to be more vulnerable to bone metastasis and lymph node metastasis than other types of cancer, and nuclear examinations whole body bone scan and lymphoscintigraphy are performed commonly before and after breast cancer operation. In case whole body bone scan is performed on the day before lymphoscintigraphy, the radiopharmaceutical taken into and remaining in the bones provides anatomical information for tracking and locating sentinel lymph nodes. Thus, this study purposed to examine how much bone density affects in locating sentinel lymph nodes. Materials and Methods: The subjects of this study were 22 patients (average age $52{\pm}7.2$) who had whole body bone scan and lymphoscintigraphy over two days in our hospital during the period from January to December, 2009. In the blind test, 22 patients (average age $57{\pm}6.5$) who had lymphoscintigraphy using $^{57}Co$ flood phantom were used as a control group. In quantitative analysis, the relative ratio of the background to sentinel lymph nodes was measured by drawing ROIs on sentinel lymph nodes and the background, and in gross examination, each of a nuclear physician and a radiological technologist with five years' or longer field experience examined images through blind test in a five-point scale. Results: In the results of quantitative analysis, the relative ratio of the background to sentinel lymph nodes was 14.2:1 maximum and 8.5:1 ($SD{\pm}3.48$) on the average on the front, and 14.7:1 maximum and 8.5:1 ($SD{\pm}3.42$) on the average on the side. In the results of gross examination, when $^{57}Co$ flood phantom images were compared with images containing bones, the score was relative high as 3.86 ($SD{\pm}0.35$) point for $^{57}Co$ flood phantom images and 4.09 ($SD{\pm}0.42$) for bone images. Conclusion: When whole body bone scan was performed on the day before lymphoscintigraphy, the ratio of the background to sentinel lymph nodes was over 10:1, so there was no problem in locating lymph nodes. In addition, we expect to reduce examination procedures and improve the quality of images by indicating the location of sentinel lymph nodes using bone images as body contour without the use of a source.

  • PDF

Usefulness of CTAC Shift Revision Method of Artifact by Diaphragm in PET/CT (PET/CT 검사에서 횡격막에 의한 인공물의 CTAC Shift 보정방법의 유용성)

  • Ham, Jun Cheol;Kang, Chun Koo;Cho, Seok Won;Bahn, Young Kag;Lee, Seung Jae;Lim, Han Sang;Kim, Jae Sam;Lee, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.71-75
    • /
    • 2013
  • Purpose: Currently, decrement revision using LDCT is used in PET/CT. But cold artifacts are often found in decrement revision image by mismatch between LDCT image and Emission image near diaphragm due to patient's respiration. This research studied reduction of cold artifact by patient's respiration using CTAC Shift among revision methods. Materials and Methods: From March to September in 2012, 30 patients who had cold artifacts by respiration were targeted using PET/CT Discovery 600 (GE Healthcare, MI, USA) equipment. Patients with cold artifacts were additionally scan in diaphragm area, and the image shown cold artifacts at whole body test were revised using CTAC Shift. Cold artifacts including image, additional scan image and CTAC Shift revision image were evaluated as 1~5 points with naked eye by one nuclear medicine expert, 4 radiotechnologists with over 5 year experience. Also, standard uptake value of 3 images was compared using paired t-test. Results: Additional scan image and CTAC Shift revision image received relatively higher score in naked eye evaluation than cold artifacts including image. The additional scan image and CTAC Shift revision image had high correlation as the results of ANOVA test of standard uptake value and did not show significant difference. Conclusion: When cold artifacts are appeared by patient's respiration at PET/CT, it causes not only patient inconvenience but troubles in test schedule due to extra radiation exposure and time consumption by additional scan. But if CTAC Shift revision image can be acquired with out additional scan, it is considered to be helped in exact diagnosis without unnecessary extra radiation exposure and additional scan.

  • PDF