• 제목/요약/키워드: 핵연료 프레팅

검색결과 34건 처리시간 0.019초

온도 상승이 개량형 핵연료 피복관과 지지격자 사이의 프레팅 마멸에 미치는 영향 (Influence of Temperature on the Fretting Wear of Advanced Nuclear Fuel Cladding Tube against Supporting Grid)

  • 이영제;박용창;정성훈;김진선;김용환
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.144-148
    • /
    • 2006
  • The experimental investigation was performed to find the associated changes in characteristics of fretting wear with various water temperatures. The fretting wear tests were carried out using the zirconium alloy tubes and the grids with increasing the water temperature. The tube materials in water of $20^{\circ}C,\;50^{\circ}C\;and\;80^{\circ}C$ were tested with the applied load of 20 N and the relative amplitude of $200{\mu}m$. The worn surfaces were observed by SEM, EDX analysis and 2D surface profiler. As the water temperature increased, the wear volume was decreased, but oxide layer was increased on the worn surface. The abrasive wear mechanism was observed at water temperature of $20^{\circ}C$ and adhesive wear mechanism occurred at water temperature of $50^{\circ}C,\;80^{\circ}C$. As the water temperature increased, surface micro-hardness was decreased, but wear depth and wear width were decreased due to increasing stick phenomenon. Stick regime occurred due to the formation of oxide layer on the worn surface with increasing water temperatures

부식된 핵연료 피복관과 지지격자 사이의 프레팅 마멸 특성 (Fretting Wear Characteristics of the Corroded Fuel Cladding Tubes for Nuclear Fuel Rod against Supporting Girds)

  • 김진선;박세민;김용환;이승재;이영제
    • Tribology and Lubricants
    • /
    • 제23권3호
    • /
    • pp.130-133
    • /
    • 2007
  • Fuel cladding tubes in nuclear fuel assembly are held up by supporting grids because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube and support. The fretting wear of tube and support can threaten the safety of nuclear power plant. Therefore, a research about the fretting wear characteristics of tube-support is required. The fretting wear tests were performed with supporting grids and cladding tubes, especially after corrosion treatment on tubes, in water. The tests were done using various applied loads with fixed amplitude. From the results of fretting tests, the wear amounts of tube materials can be predictable by obtaining the wear coefficient using the work rate model. Due to stick phenomena the wear depth was changed as increasing load and temperature. The maximum wear depth was decreased as increasing the water temperatures. At high temperatures there are the regions of some severe adhesion due to stick phenomena.

부식된 핵연료 피복관과 지지격자 사이의 프레팅 마멸 특성 (Fretting Wear Characteristics of the Corroded Fuel Cladding Tubes for Nuclear Fuel Rod against Supporting Girds)

  • 이영제;김진선;박세민;김용환;이승재
    • Tribology and Lubricants
    • /
    • 제24권3호
    • /
    • pp.129-132
    • /
    • 2008
  • Fuel cladding tubes in nuclear fuel assembly are held up by supporting grids because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube and support. The fretting wear of tube and support can threaten the safety of nuclear power plant. Therefore, a research about the fretting wear characteristics of tube-support is required. The fretting wear tests were performed with supporting grids and cladding tubes, especially after corrosion treatment on tubes, in water. The tests were done using various applied loads with fixed amplitude. From the results of fretting tests, the wear amounts of tube materials can be predictable by obtaining the wear coefficient using the work rate model. Due to stick phenomena the wear depth was changed as increasing load and temperature. The maximum wear depth was decreased as increasing the water temperatures. At high temperatures there are the regions of some severe adhesion due to stick phenomena.

핵연료 프레팅 마멸에서 마멸면적을 이용한 스프링 형상 영향 평가 (Evaluation of spring shape effect on the nuclear fuel fretting using worn area)

  • 이영호;김형규;정연호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.313-323
    • /
    • 2003
  • The sliding wear behaviors of Zircaloy-4 nuclear fuel rod were investigated using two support springs with convex and concave shapes in room temperature air and water. The main focus is to compare the wear behavior of various test variables such as slip amplitude, environment, contact contours with different spring shape and a number of cycles. The results indicated that wear volume and maximum wear depth increased with slip amplitude in both air and water, but their trends tended to change according to the spring shapes and test environments. In air condition, the wear volume was controlled by wear debris behavior generated on worn surface. As a result, final wear volume and maximum wear depth decreased if a ratio of protruded wear volume to worn area $(D_p)$ would be saturated to specific value. This is because wear particle layer could accommodate large strain by accumulating and transforming wear particle layer. However, in water condition, metal-to metal contact was more dominant and wear volume was greatly affected by changed mechanical behavior between contact surfaces since wear debris should be generated after repeated plastic deformation and fracture. After wear test, worn surfaces were examined using optical microscope and SEM and details of wear mechanism were discussed using a ratio of wear volume to worn area $(D_e)$ at each test condition.

  • PDF