• Title/Summary/Keyword: 해파

Search Result 22, Processing Time 0.017 seconds

Error Performance Analysis of Digital Radio Signals in an Electromagnetic Interference (EMI) Environment of Impulsive Noise Plus Disturbance (임펄스 잡음과 방해파에 의한 전자파 장해(EMI) 환경하에서의 디지털 무선통신 신호의 오율해석)

  • Cho, Sung-Eon;Leem, Kill-Yong;Cho, Sung-Joon;Lee, Jin
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.3
    • /
    • pp.36-54
    • /
    • 1995
  • The error performance of digital radio signals (i.e., M-ary PSK signal, DQPSK signal, MSK signal, GMSK signal) interfered by impulsive noise and electromagnetic interference (EMI) is analyzed and discussed. In analysis at first, the error rate equations have been derived in an electromagnetic interference plus impulsive noise environment. And then, the error performance has been evaluated and shown in figures as a function of carrier-to-noise ratio, carrier-to-interference ratio, impu- lsive index, gaussian noise to impulsive noise power ratio, and interference index to measure the amount of error degradation in digital radio signals. From the obtained results we have known that in the presence of m-distributed tone interference plus inpulsive noise, the more significant the electromagnetic interference amplitude varies, the more significant performance degradation is produced. The listing the digital radio signals from the most degraded to the least is that DQPSK, GMSK, QPSK and MSK signal. In the constant amplitude tone interference plus impulsive noise environment, the effect of in- terference nearly disappears over about 20dB in CIR. The effect of constant tone interference on error rate performance is reduced more remarkably in the region from 10dB to 15dB in CIR. In both enviroments of m-distributed tone interference and constant amplitude tone interference, the more electromagnetic interference amplitude varies and CIR increases, the more error perfor- mance is improved. But it is found out that the performance can not be improved significantly even the electromagnetic interference becomes weak. This describes that the impulsive noise affects dominantly to the performance degradation.

  • PDF

Petrology of Host Body of Feldspar Deposits in Jechon Ganites (장석광상 모암인 제천반상화강암의 암석학적 특성)

  • Lee, Han-Yeang;Kim, Dai-Oap;Park, Joong-Kwon
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.405-414
    • /
    • 2001
  • Jecheon granite can be divided into two types; porphyritic granite (K-feldspar megacryst bearing) and medium-grained biotite granite. Porphyritic granite, host body of feldspar deposits, is 8${\sim}$11 km in diameter and about 80 $km^{2}$ in area. It mainly contains K-feldspar, plagioclase, biotite and quartz, and magnetite, zircon, sphene and apatite are accessary minerals. Enclosed minerals in K-feldspar megacryst with 3${\sim}$10 cm in diameter are hornblende, plagioclase, quartz, magnetite, apatite, sphene and zircon. Mafic enclaves mainly consisting of hornblende, plagioclase and quartz are frequently observed in porphrytic granite. Medium-grained biotite granite consists of K-feldspar, plagioclase, biotite and hornblende as main, and hematite, muscovite, apatite and zircon as accessary minerals. Core and rim An contents of plagioclase from porphyritic granite, medium biotite granite, K-feldspar megacryst, and mafic enclave are 36 and 21, 40 and 32, 37 and 32, and 43 and 36, respectively. $X_{Fe}$ values of hornblende are 0.57 at biotite granite, 0.51 at K-feldspar mehacryst and 0.45 at mafic enclave. $X_{Fe}$ values of biotite and hornblende are homogeneous without chemical zonation. K-feldspar megacryst shows end member of pure composition with exsolved thin lamellar pure albites. Characteristics of mineral compositions and petrography indicate porphyritic granite is igneous origin and medium-grained biotite granite comes from the same source of magma; biotite granite is initiated to solidly and from residual melt porphyritic granite can be formed. Possibly K-feldspar megacrysts are formde under H$_{2}$O undersaturation condition and near K-feldspar solidus curve temperature; growth rate is faster than nucleation rate. Mafic enclaves are thought to be mingled mafic magma in felsic magma, which is formed from compositional stratigraphy. Estimated equilibrium temperature and pressure for medium-grained biotite granite are about $800^{\circ}C$ and 4.83${\sim}$5.27 Kb, respectively.

  • PDF