• Title/Summary/Keyword: 해저 기울기

Search Result 19, Processing Time 0.019 seconds

Study of Drag Force of Subsea Pipeline in Trench (트랜치내의 해저 관로 항력 변화 고찰)

  • 조철희;김경수;홍성근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.13-17
    • /
    • 2000
  • 해저관로가 노출되어 있을 경우 파도와 조류 등에 의한 외적 하중으로부터 안정적이어야 한다. 트랜치 구간 내의 해저관로에 작용하는 유체 입자의 속도와 가속도는 해저면과 비교하여 볼 때 현저히 감소하므로 감쇄 계수를 사용하여 트랜치 구간 내에 설치되는 해저관로의 안정성을 해석한다. 그러나, 다양한 트랜치 구간의 깊이와 기울기에 대한 감쇄 계수에 대해 많은 자료가 부족하여 실제 설계에는 한정된 계수들이 이용된다. 본 논문에서는 다양한 깊이와 기울기를 가진 트랜치 구간의 실험 모형을 제작하여 회류 수조에서 P.I.V(입자 영상 속도계) 기법을 이용하여 여러 속도에 대하여 실험을 수행하였다. 다양한 트랜치 구간 내의 실린더 주변의 유동 특성과 유체 입자의 수평 속도를 측정하여 항력 감쇄 계수를 산출해 냈으며 실제 해양 공사에서 적용 가능한 안정성 해석 기준을 제시하였다.

  • PDF

High Frequency Bottom Reverberation Characteristics in Shallow Water (천해 해역에서 측정한 고주파 해저면 잔향음 특성)

  • 박정수;정문섭;최재영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.5-12
    • /
    • 1993
  • 고주파 음원을 사용하여 측정한 천해 해역에서의 잔향음 특성 변화와 해양 환경요소와의 연관성을 고찰하고자 하였다. 여름철에 실시한 현장실험에서 획득한 잔향음신호를 분석하여 다음과 같은 결과를 얻었다. 1) 수직 음속이 음의 기울기를 갖고 있어서 해저면 잔향음이 우세하다. 2) 음파발사 방위각에 따라 19dB 이상의 해저면 잔향음준위 차이를 보인다. 3) 계산된 해저면 후방산란 강도는 기존의 측정자료에 비해 약간 높게 나타난다.

  • PDF

Influence of the Shear Property of Seabed Appearing in the Striation Pattern of the Spectrogram of Ship-radiated Noise Measured in a Shallow Sea (천해에서 측정한 선박 방사소음 스펙트로그램의 줄무늬 패턴에 나타나는 해저면 전단성 영향)

  • Lee, Seong-Wook;Hahn, Joo-Young;Baek, Woon;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • This paper represents the results of interpretation on the cause of sign changing of the striation slopes appearing in the range-frequency domain spectrogram of ship-radiated noise measured in a shallow sea. Striation patterns and dispersion characteristics simulated from a numerical model based on mode theory at various seabed conditions show that the sign changing of the striation slopes appearing in measured signal is caused by the shear property of seabed. more specifically by the shear property of the basement lying below the sediment which is estimated about 3±1m thick.

Turbidity Meter Calibrations Based on Grain Size Distribution of Trapped Suspended Material (포획된 부유물질의 입도분포를 고려한 탁도계 검교정)

  • 조홍연;김백운
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2003
  • Turbidity meter calibrations were conducted using bottom sediment and suspended material collected with a vertical array of sediment traps at the coastal water off Gaduk Island. Compared to the bottom sediment comprising sand fraction of approximately 6%, trapped suspended material was composed entirely of silt and clay fractions and showed a tendency to get finer as elevation from the sea-bed increases. Slope parameter of linear regression due to bottom sediment was of minimum value and values of those due to suspended material increased gradually as the height of sediment trap increases (i.e., sediment size decreases). This result shows that turbidity meter calibration using bottom sediment can cause an overestimation error in the calculation of suspended sediment concentration and that the error can reach up to 25% in case of this study. Therefore, it is suggested that the use of a corrected calibration curve based on grain size distribution of suspended material instead of bottom sediment may reduce the measurement error of suspended sediment concentration.

Reverberation-derived bottom backscattering strength in the shallow sea (Reverberation 측정에 의한 해저에서의 음파 산란강도)

  • 안상환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 1983
  • 음속 기울기가 부(-)의 약한 상태와 강한상태에 있는 천해의 두 해역에서 단일주파수의 지향성 음원과 광대역 충격음원 두 종류에 의하여 측정을 하였다. 음파가 처음 해저에 부딪치는 가까운 거리에 서의 Reverberation 은 ray tracing 에 의하여 입사각에 따라 power spectrum analyzer에 의하여 분석 되었으며 원거리의 경우 이론 모델로 계산된 값과 비교되었다. 이 때의 산란은 지향성에 산란상수 -24dB였다. 또한 산란강도는 주파수의 증가에 따라 완만한 증가를 나타내었다.

  • PDF

Derivation of Coherent Reflection Coefficient at Mid and Low Frequency for a Rough Surface (불규칙 경계면에 대한 중저주파수 간섭 반사 계수 유도)

  • Chu, Young-Min;Seong, Woo-Jae;Byun, Sung-Hoon;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.174-186
    • /
    • 2009
  • When we apply a propagation model to the ocean with boundaries, we can calculate reflected wave using reflection coefficient suggested by Rayleigh assuming the boundaries are flat. But boundaries in ocean such as sea surface and sea bottom have an irregular rough surface. To calculate the reflection loss for an irregular boundary, it is needed to compute the coherent reflection coefficient based on an experimental formula or scattering theory. In this article, we derive the coherent reflection coefficients for a fluid-fluid interface using perturbation theory, Kirchhoff approximation and small-slope approximation respectively. Based on each formula, we can calculate coherent reflection coefficients for a rough sea surface or sea bottom, and then compare them to the Rayleigh reflection coefficient to analyze the reflection loss for a random rough surface. In general, the coherent reflection coefficient based on small-slope approximation has a wide valid region. Comparing it with the coherent reflection coefficients derived from the Kirchhoff approximation and perturbation theory, we discuss a valid region of them.

Correction in the Measurement Error of Water Depth Caused by the Effect of Seafloor Slope on Peak Timing of Airborne LiDAR Waveforms (지형 기울기에 의한 항공 수심 라이다 수심 측정 오차 보정)

  • Sim, Ki Hyeon;Woo, Jae Heun;Lee, Jae Yong;Kim, Jae Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • Light detection and ranging (LiDAR) is one of the most efficient technologies to obtain the topographic and bathymetric map of coastal zones, superior to other technologies, such as sound navigation and ranging (SONAR) and synthetic aperture radar (SAR). However, the measurement results using LiDAR are vulnerable to environmental factors. To achieve a correspondence between the acquired LiDAR data and reality, error sources must be considered, such as the water surface slope, water turbidity, and seafloor slope. Based on the knowledge of those factors' effects, error corrections can be applied. We concentrated on the effect of the seafloor slope on LiDAR waveforms while restricting other error sources. A simulation regarding in-water beam scattering was conducted, followed by an investigation of the correlation between the seafloor slope and peak timing of return waveforms. As a result, an equation was derived to correct the depth error caused by the seafloor slope.

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment (서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석)

  • Joo, Jongmin;Kim, Jonguk;Ko, Youngtak;Kim, Seung-Sep;Son, Juwon;Pak, Sang Joon;Ham, Dong-Jin;Son, Seung Kyu
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.121-134
    • /
    • 2016
  • We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.

The relationship between the array invariant-based ranging and the effective range in a weakly range-dependent environment (거리 종속 환경에서의 배열 불변성 기반 거리추정과 상응 거리와의 관계)

  • Donghyeon Kim;Gihoon Byun;Daehwan Kim;Jeasoo Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.455-465
    • /
    • 2024
  • In shallow water, the array invariant, known as the effective range estimation method, is developed based on the broadband dispersion characteristics in an ideal waveguide, which can be summarized by the waveguide invariant. It is robust enough to estimate both the array tilt and range simultaneously, even in situations where array tilt exists. Recently, it has been extended to fully consider the angle dependence of the waveguide invariant. However, applying the array invariant in range-dependent environments instead of range-independent environments can lead to range estimation errors due to bathymetry mismatch. In this paper, we interpret such range estimation errors by introducing the concept of effective range. Through numerical simulations and experimental data in a weakly range-dependent environment, we demonstrate the relationship between range estimation errors and effective range.

Depth dependence of the low frequency propagation loss for the sea surface noise sources (저주파 수면소음원에 의한 전파손실의 수심에 따른 변화)

  • Na, Jeong-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.48-53
    • /
    • 1987
  • The depth dependent sound fields have been calculated for a single frequency source to reveal the fluctuating sound energy at both near the surface and the bottom of the water layer. Those fluctuation are mainly due to the mode function behavior along the depth where the sound-speed gradient acts like trapping lower mode sound energy in those medium.

  • PDF