• Title/Summary/Keyword: 해저지형변동

Search Result 49, Processing Time 0.032 seconds

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Variation and Structure of the Cold Water Around Ganjeol Point Off the Southeast Coast of Korea (하계 용승현상에 따른 간절곶 주변해역의 냉수역 구조와 변동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.836-845
    • /
    • 2016
  • The variation and structure of the cold water mass around Ganjeol Point during the summer of 2011 were studied using data from CTD observations and temperature monitoring buoys deployed at 20 stations off the southeast coast of Korea. There was a $-12^{\circ}C$ surface temperature difference between the cold water mass and normal water during the monitoring period. Variations in the isothermal lines for surface temperature along the coast showed that the seabed topography at Ganjeol Point played an important part in the distribution of water temperature. Cold water appeared when the wind components running parallel to the coast had positive values. The upwelling -response for temperature fluctuations was very sensitive to changes in wind direction. Vertical turbulent mixing due to the seabed topography at Ganjeol Point can reinforce the upwelling of cold bottom water. From wavelet analysis, coherent periods found to be 2-8 days during frequent upwelling events and phase differences for a decrease in water temperature with a SSW wind were 12-36 hours.

A Numerical Modeling Study on the Seasonal Variability in the Gulf of Alaska (알라스카 만의 계절변화에 대한 수치모형 실험)

  • Bang, In-Kweon;Zygmunt Kowlik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.309-325
    • /
    • 1994
  • Ocean circulation in the Gulf of Alaska is remarkably constant throughout the year despite of being forced by one of the largest seasonal wind stresses in the world. To explain the small seasonal changes in the transport of Alaska Stream. a set of numerical models is employed. First a diagnostic approach is applied to reproduce circulation from the observed density structure. The results reveals the very small seasonal changes in the Alaska Stream transport. Next a series of the prognostic models is used: a barotropic model. a flat bottom baroclinic model, and baroclinic model with topography. These models reveal the influence of topography and baroclinicity on the ocean's response to the seasonal wind forcing. The intercomparisons of the various model results suggest that the seasonal response of the baroclinic ocean is primary barotropic and the resultant barotropic circulation is weakened by the scattering effect of the bottom topography.

  • PDF

Bathymetric changes off the sea south of Jinwoo-do Island in the Nakdong River estuary (낙동강 하구역 진우도 남측 해역의 해저지형 변화)

  • Park, Bong-woon;Kim, Sung-bo;Kim, Jae-joong;Kim, Ki-cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • Bathymetric changes were studied in the southern sea off the Jinwoo-do Island, which is one of the deltaic barrier islands surrounding the Nakddong river estuary. In this study, 16 bathymetry data sets were obtained from June 2006 to April 2015. Two narrow channels, the one lying between Jinwoo-do and Shinja-do, and the other one lying between Nulcha-do and Jinwoo-do extended into the eastern and western parts of the study area, respectively. The eastern extension of the channel contained a passage of mixed estuarine waters of seawater and river water discharged from the Nakdong river barrier and the west Nakdong River. The western channel connected the Nakdong River estuary with the Busan New Port via a connecting pier. Total volumetric changes of sediments in study area and discharge flow of the Nakdong river barrier were analyzed. Bottom topographical changes occurred mainly in the eastern extension of the channel. These changes were initially characterized by gradual erosion or deposition followed by rapid restoration. The total volume of sediment gradually increased from June 2006 to March 2013, but experienced a sudden decrease in October 2013 because of typhoon Danas. Few fluctuations were observed from October 2013 to April 2015. Analysis of the cross-sectional bathymetry of the north-south direction showed that the deepest point of the eastern channel moved 100-130 m westward and 200 m northward between June 2006 and April 2015.

Seafloor Morphology and Surface Sediment Distribution of the Southwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 남서부 해저지형 및 표층퇴적물 분포)

  • Koo, Bon-Young;Kim, Seong-Pil;Lee, Gwang-Soo;Chung, Gong Soo
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • Multi-beam echosounder data and grain size analysis data of surface sediment were acquired and analyzed in order to investigate the shelf-to-slope morphology, geological character, and their geological controlling factors in the southwestern margin of the Ulleung Basin. According to the morphological character, the continental shelf can be divided into two parts: (1) shallow (~100 m) and steep ($0.5^{\circ}$) inner shelf, (2) deep (100-300 m) and gentle ($0.2^{\circ}$) outer shelf. The continental slope is featured with eight distinct topographic depressions of various spatial dimension (~121 $km^2$ in area) and head wall gradient (${\sim}24.3^{\circ}$). They are developed adjacent to each other and presumably formed by submarine landslides which have recurred under the strong influences of earthquakes and eustatic sea-level change. The inner continental shelf and the continental slope are dominated by fine-grained sediment, whereas the outer continental shelf is dominated by coarse-grained sediment. The surface sediment distribution seems dominantly influenced by eustatic sea-level change. The outer continental shelf is mostly covered by coarse relict sediment deposited during lowstand sea-level, while the inner shelf is covered with recent sediment during highstand sea-level. The surface of the continental slope is covered with fine-grained sediments which were supplied by hemipelagic advection process.

사천진항 해저지형변동에 관한 연구

  • 백승화
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.68-72
    • /
    • 1997
  • 사천진항은 동해안에 위치한 제1종 어항으로 강원도 강릉시에 소재하고 있는 항구로서 남북쪽에 비교적 긴 모래 해안이 발달해 있으며 항 남단으로 사천천 하구와 연결되고 있다. 항북쪽으로는 연곡천, 남쪽 아래쪽에서는 남대천이 흐르고 있으며 해안은 1/40-l/60의 대체로 완만한 경사를 이루고 있다. 사천진항은 태풍의 내습이 없는 항으로 탁월풍은 SW, 평균풍속은 2.7㎧로서 년 강우량이 1383mm이며 조석관계는 평균조차가 13cm, 대조차가 약 17cm, 소조차가 약 9cm로서 작은 조차를 보이고 있다. (중략)

  • PDF

Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction (파랑-흐름의 상호작용 하에서 지형변동에 관한 3차원 연성 수치모델의 개발)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1463-1476
    • /
    • 2014
  • In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.

Improvement in Bottom Detection for Hydroacoustic Assessment of Demersal Fish (저서어자원량의 음향추정에 있어서 해저검출 알고리즘에 관한 연구)

  • 황두진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.186-194
    • /
    • 2000
  • bottom as a reference basis, some theoretical elements which form bottom echoes during acoustic survey of demersal fish were considered. A stable bottom detection method based on maximum voltage difference, which was not influenced by variable levels and waveform transformation. The method has been shown to be effective using in-situ bottom echo waveforms and computer simulation data. A comparison between near-bottom SV profiles acquired in Funka Bay, Hokkaido, of Japan, the East China Sea and the Yellow Sea, of Korea, with the threshold method and maximum differential voltage method, shows that the SV obtained with the maximum differential voltage method is 4-6 dB higher than those with threshold method within 2m from the bottom.

  • PDF