• Title/Summary/Keyword: 해저지반의 불안정

Search Result 5, Processing Time 0.02 seconds

Comparison Study on the Residual Excess Pore Water Pressure Observed in seabed (해저지반에서 계측된 잔류과잉간극수압에 대한 비교 연구)

  • Yang, Soonbo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.173-179
    • /
    • 2013
  • The interaction among wave, seabed and marine structure is an important issue in coastal engineering as well as geotechnical engineering. Understanding variations of stresses and pore water pressures generated in seabed induced by waves is important for civil engineers who have to design the foundation for various marine structures and verify the instability of seabed. In the matters on seabed instability, particularly, in the case of wave-induced liquefaction of seabed, it is turned out there are two different mechanisms through previous studies. These are caused by the transient or oscillatory nature and the residual or progressive nature of excess pore water pressure generated in seabed, respectively. In this study, it is analyzed dynamic characteristics of soils sampled in seabed around the port of Kochi, Japan, through the dynamic triaxial tests and the residual excess pore water pressure in the seabed induced by seepage force of wave. In addition, the calculated residual excess pore water pressures were compared with the field data observed in the port of Kochi.

중복파에 의해 발생하는 해저지반 내부의 잔류과잉간극수압의 발생 특성

  • Yang, Sun-Bo;Kim, Nam-Hyeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.15-17
    • /
    • 2012
  • 파, 해저지반 및 해안 해양구조물과의 관계는 해안공학뿐만 아니라 지반공학 분야에서도 중요한 이슈중의 하나이며, 파랑에 의한 해저지반 내부의 압력 및 응력의 파악은 다양한 해안 해양 구조물의 기초 설계 및 해저 연안 지반의 불안정성 검토에 있어서 중요한 과제이다. 해저 지반의 불안정에 대한 문제 중, 파랑에 의한 해저지반의 액상화는 기존의 연구를 통하여, 두개의 메커니즘이 존재한다는 것이 밝혀졌으며, 이는 각각 파랑에 의해 해저지반 내부에 발생하는 과잉간극수압의 변동 특성 및 잔류 특성에 따른 것이다. 이 연구에서는 중복파에 의해 해저지반 내부에 에 발생하는 과잉간극수압에 대하여 수치해석을 하였으며, 발생하는 과잉간극 수압 중 잔류 과잉간극수압의 발생 특성과 실험 결과를 비교 분석하였다.

  • PDF

Determination of Dynamic Free Span Length for Subsea Pipelines with General Boundary Conditions (일반화된 경계조건을 갖는 해저파이프라인의 동적 자유경간 결정 방법)

  • 박한일
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.290-295
    • /
    • 2001
  • Subsets pipelines are exposed to several potential risks of damage due to corrosion, soil instability, anchor impact and other hazards. One of the main risk factors for the safety of a subsea pipeline is its free spanning. This paper examines the safety of subsea pipelines with free span under axial compressive load. The variation of allowable lengths of dynamic free span is examined for generalized boundary conditions. The free span is modelled as a beam with an elastic foundations and the boundary condition is replaced by linear and rotational springs at each end. A dynamic free span curve is obtained with a function of non-dimensional parameters and can be used usefully for the design of subsea pipelines with a free span. A case study is carried out to introduce the application method of the curve.

  • PDF

Case Study on Reliability Analysis of Offshore Wind Turbine Foundation (해상풍력기초 신뢰성해석 사례분석 연구)

  • Yoon, Gillim;Kim, Hongyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.91-98
    • /
    • 2012
  • In this paper, the behavior of offshore wind turbine(OWT) foundation which is modeled by using existing design method and FEM is compared. When the same type of foundation is designed under the same sea and ground condition, the behavior characteristics with each model are compared. As a result, the member forces between apparent fixity and distributed spring type foundation which consider the ground stiffness are not different markedly, while fixed-base type foundation shows relatively lower member forces, which results in smaller safety margin. In other words, considering ground stiffness is reasonable because soil-pile interaction affects significantly on the analysis result. A case study with a monopile shows significant errors between p-y and FEM model at the head and tip of the pile. Also, it shows that the errors at the tip with diameter increase of the pile is larger. Thus, considering ground characteristics and engineering judgment are necessary in practice. A comparison of reliability analysis between tripod and monopile type foundation on the same condition shows larger probability of failure in monopile type and it indicates that the safety margin of monopile type can be lower.

Comparative Analysis of Bathymetry in the Dongdo and the Seodo, Dokdo using Multibeam Echosounder System (다중빔 음향 측심기를 이용한 독도 동도와 서도 남부 연안 해저지형 비교 분석)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • In this study, we analyze precise seabed geomorphology and conditions for comparing the nearshore areas of the Dongdo(East Island) and the Seodo(West Island) using detailed bathymetry data and seafloor backscattering images, in Dokdo, the East Sea. We have been obtained the detailed bathymetry data and the seafloor backscattering data. The survey range is about $250m{\times}250m$ including land of islets to the nearshore areas of the southern part of the Dongdo and the Seodo. As a result of bathymetry survey, the southern area of the Dongdo(~50 m) is deeper than the Seodo(~30 m) in the water depth. The survey areas are consist of extended bedrocks from land of the Dongdo and the Seodo. The underwater rock region of the Seodo is larger than the Dongdo. In spite of similar extended rocks features from islets, there are some distinctive seabed characteristics between the southern nearshore areas of the Dongdo and the Seodo. The Talus-shaped seafloor environment formed by gravel and underwater rocks originating from the land of the Dongdo is up to about 15 m depth. And the boundary line of between extended bedrocks and seabottom is unclear in the southern nearshore of the Dongdo. On the other hand, the southern coast of the Seodo is characterized by relatively large scale underwater rocks and evenly distributed sediments, which clearly distinguish the boundary of between extended bedrocks and seafloor. This is because the tuff layers exposed to the coastal cliffs of the Dongdo are weak against weathering and erosion. It is considered that there are more influences of the clastic sediments carried from the land of the Dongdo compared with the Seodo. Particularly, the land of the Dongdo has been undergoing construction activities. And also a highly unstable ground such as faults, joints and cracks appears in the Dongdo. In previous study, there are dissimilar features of the massive tuff breccia formations of the Dongdo and the Seodo. These conditions are thought to have influenced the different seabed characteristics in the southern nearshore areas of the Dongdo and the Seodo.