• Title/Summary/Keyword: 해저면영상탐사기

Search Result 1, Processing Time 0.016 seconds

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA (심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상)

  • Kasaya, Takafumi;Kanamatsu, Toshiya;Sawa, Takao;Kinosita, Masataka;Tukioka, Satoshi;Yamamoto, Fujio
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.