• Title/Summary/Keyword: 해양심층수와 표층수

Search Result 32, Processing Time 0.019 seconds

Dynamic Characteristics of Water Column Properties based on the Behavior of Water Mass and Inorganic Nutrients in the Western Pacific Seamount Area (서태평양 해저산 해역에서 수괴와 무기영양염 거동에 기초한 동적 수층환경 특성)

  • Son, Juwon;Shin, Hong-Ryeol;Mo, Ahra;Son, Seung-Kyu;Moon, Jai-Woon;Kim, Kyeong-Hong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.143-156
    • /
    • 2015
  • In order to understand the dynamic characteristics of water column environments in the Western Pacific seamount area (approximately $150.2^{\circ}E$, $20^{\circ}N$), we investigated the water mass and the behavior of water column parameters such as dissolved oxygen, inorganic nutrients (N, P), and chlorophyll-a. Physico-chemical properties of water column were obtained by CTD system at the nine stations which were selected along the east-west and south-north direction around the seamount (OSM14-2) in October 2014. From the temperature-salinity diagram, the main water masses were separated into North Pacific Tropical Water and Thermocline Water in the surface layer, North Pacific Intermediate Water in the intermediate layer, and North Pacific Deep Water in the bottom layer, respectively. Oxygen minimum zone (OMZ, mean $O_2$ $73.26{\mu}M$), known as dysoxic condition ($O_2<90{\mu}M$), was distributed in the depth range of 700~1,200 m throughout the study area. Inorganic nutrients typified by nitrite + nitrate and phosphate showed the lowest concentration in the surface mixed layer and then gradually increased downward with representing the maximum concentration in the OMZ, with lower N:P ratio (13.7), indicating that the nitrogen is regarded as limiting factor for primary production. Vertical distribution of water column parameters along the east-west and south-north station line around the seamount showed the effect of bottom water inflowing at around 500 m deep in the western and southern region, and concentrations of water column parameters in the bottom layer (below 2,500 m deep) of the western and southern region were differently distributed comparing to those of the other side regions (eastern and northern). The value of Excess N calculated from Redfield ratio (N:P=16:1) represented the negative value throughout the study area, which indicated the nitrogen sink dominant environments, and relative higher value of Excess N observed in the bottom layer of western and southern region. These observations suggest that the topographic features of a seamount influence the circulation of bottom current and its effects play a significant role in determining the behavior of water column environmental parameters.

Comparison of Two Methods for Estimating the Appearance Probability of Seawater Temperature Difference for the Development of Ocean Thermal Energy (해양온도차에너지 개발을 위한 해수온도차 출현확률 산정 방법 비교)

  • Yoon, Dong-Young;Choi, Hyun-Woo;Lee, Kwang-Soo;Park, Jin-Soon;Kim, Kye-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.94-106
    • /
    • 2010
  • Understanding of the amount of energy resources and site selection are required prior to develop Ocean Thermal Energy (OTE). It is necessary to calculate the appearance probability of difference of seawater temperature(${\Delta}T$) between sea surface layer and underwater layers. This research mainly aimed to calculate the appearance probability of ${\Delta}T$ using frequency analysis(FA) and harmonic analysis(HA), and compare the advantages and weaknesses of those methods which has used in the South Sea of Korea. Spatial scale for comparison of two methods was divided into local and global scales related to the estimation of energy resources amount and site selection. In global scale, the Probability Differences(PD) of calculated ${\Delta}T$ from using both methods were created as spatial distribution maps, and compared areas of PD. In local scale, both methods were compared with not only the results of PD at the region of highest probability but also bimonthly probabilities in the regions of highest and lowest PD. Basically, the strong relationship(pearson r=0.96, ${\alpha}$=0.05) between probabilities of two methods showed the usefulness of both methods. In global scale, the area of PD more than 10% was less than 5% of the whole area, which means both methods can be applied to estimate the amount of OTE resources. However, in practice, HA method was considered as a more pragmatic method due to its capability of calculating under various ${\Delta}T$ conditions. In local scale, there was no significant difference between the high probability areas by both methods, showing difference under 5%. However, while FA could detect the whole range of probability, HA had a disadvantage of inability of detecting probability less than 10%. Therefore it was analyzed that the HA is more suitable to estimate the amount of energy resources, and FA is more suitable to select the site for OTE development.