• Title/Summary/Keyword: 해양모니터링

Search Result 735, Processing Time 0.02 seconds

Investigation on Characteristics of Summertime Extreme Temperature Events Occurred in South Korea Using Self-Organizing Map (자기조직화지도(Self-Organizing Map)를 이용한 최근 우리나라 여름철 극한온도 특성 분류)

  • Lim, Won-Il;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • This study investigates the characteristic spatial patterns and dynamic processes associated with the summertime extreme temperature events in South Korea during the last 20 years (1995~2014) using Self-Organizing Map (SOM). The classified SOM patterns commonly have high temperature and anticyclonic circulation anomalies over South Korea. The two major teleconnection patterns are identified: one is from the subtropical western North Pacific (WNP) affecting to the north and the other is from the North Atlantic (NA) affecting downstream region. The meridional teleconnection pattern is related to the forcing of positive sea surface temperature (SST) anomaly over the WNP. The northward propagating Rossby wave generates the East Asia-Pacific (EAP) pattern to form an anticyclonic circulation anomaly over South Korea. On the other hand, NA SST anomalies generate an eastward Rossby wave train across the Eurasian continent, leading to the development of an anticyclonic circulation anomaly over South Korea. The EAP pattern occurs more frequently in July and August, whereas the midlatitude teleconnection pattern associated with NA SST anomalies develops more frequently in early summer (June).

A Long-term Variability of the Extent of East Asian Desert (동아시아 사막 면적의 경년변화분석)

  • Han, Hyeon-Gyeong;Lee, Eunkyung;Son, Sanghun;Choi, Sungwon;Lee, Kyeong-Sang;Seo, Minji;Jin, Donghyun;Kim, Honghee;Kwon, Chaeyoung;Lee, Darae;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.869-877
    • /
    • 2018
  • The area of desert in East Asia is increasing every year, and it cause a great cost of social damage. Because desert is widely distributed and it is difficult to approach people, remote sensing using satellites is commonly used. But the study of desert area comparison is insufficient which is calculated by satellite sensor. It is important to recognize the characteristics of the desert area data that are calculated for each sensor because the desert area calculated according to the selection of the sensor may be different and may affect the climate prediction and desertification prevention measures. In this study, the desert area of Northeast Asia in 2001-2013 was calculated and compared using Moderate Resolution Imaging Spectroradiometer (MODIS) and Vegetation. As a result of the comparison, the desert area of Vegetation increased by $3,020km^2/year$, while in the case of MODIS, it decreased by $20,911km^2/year$. We performed indirect validation because It is difficult to obtain actual data. We analyzed the correlation with the occurrence frequency of Asian dust affected by desert area change. As a result, MODIS showed a relatively low correlation with R = 0.2071 and Vegetation had a relatively high correlation with R = 0.4837. It is considered that Vegetation performed more accurate desert area calculation in Northeast Asian desert area.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.

Comparative Analysis of Environmental Ecological Flow Based on Habitat Suitability Index (HSI) in Miho stream of Geum river system (서식지적합도지수(HSI)에 따른 환경생태유량 비교 분석 : 미호천을 중심으로)

  • Lee, Jong Jin;Hur, Jun Wook
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • In this study, the Habitat Suitability Index (HSI) was calculated in the Miho stream of the Geum river system, and the environmental ecological flow by point was evaluated. Two points (St.3 and St.8) representing the up and downstream of Miho Stream were selected, in order to calculate the Habitat Suitability Index, the depth and velocity at point where each species is appeared were investigated. The Habitat Suitability Index (HSI) was calculated by the Washington Department of Fish and Wildlife (WDFW) method using the number collected by water depth and velocity section and the results of the flow rate survey. Two target species were selected in this study; dominant species and swimming species sensitive to flow. In the case of a single species of Zacco platypus, the water depth was 0.1 - 0.5 m and the velocity was 0.2 - 0.5 m/s. For species of swimming fish, the water depth was 0.2 - 0.5 m and the velocity was 0.2 - 0.5 m/s. The discharge-Weighted Useable Area (WUA) relationship curve and habitat suitability distribution were simulated at the Miho Stream points St.3 and St.8. At the upstream St.3 of Miho Stream, the optimal discharge was simulated as 4.0 m3/s for swimming fishes and 2.7 m3/s for Zacco platypus. At the downstream point of St.8, species of swimming fish were simulated as 8.8 m3/s and Zacco platypus was simulated as 7.6 m3/s. In both points, the optimal discharge of swimming fish was over estimated. This is a result that the Habitat Suitability Index for swimming fish requires a faster flow rate than the habitat conditions of the Zacco platypus. In the calculation of the minimum discharge, the discharge of Zacco platypus is smaller and is evaluated to provide more Weighted Useable Area. In the case of swimming fishes, narrow range of depth and velocity increases the required discharge and relatively decreases the Weighted Useable Area. Therefore, when calculating the Habitat Suitability Index for swimming fishes, it is more advantageous to calculate the index including the habitat of all fish species than to narrow the range.

Temporal variation in the community structure of green tide forming macroalgae(Chlorophyta; genus Ulva) on the coast of Jeju Island, Korea based on DNA barcoding (DNA 바코드를 이용한 제주도 연안 파래대발생(green tide)을 형성하는 갈파래(genus Ulva) 군집구조 및 주요 종 구성의 시간적 변이)

  • Hye Jin Park;Seo Yeon Byeon;Sang Rul Park;Hyuk Je Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.464-476
    • /
    • 2022
  • In recent years, macroalgal bloom occurs frequently in coastal oceans worldwide. It might be attributed to accelerating climate change. "Green tide" events caused by proliferation of green macroalgae (Ulva spp.) not only damage the local economy, but also harm coastal environments. These nuisance events have become common across several coastal regions of continents. In Korea, green tide incidences are readily seen throughout the year along the coastlines of Jeju Island, particularly the northeastern coast, since the 2000s. Ulva species are notorious to be difficult for morphology-based species identification due to their high degrees of phenotypic plasticity. In this study, to investigate temporal variation in Ulva community structure on Jeju Island between 2015 and 2020, chloroplast barcode tufA gene was sequenced and phylogenetically analyzed for 152 specimens from 24 sites. We found that Ulva ohnoi and Ulva pertusa known to be originated from subtropical regions were the most predominant all year round, suggesting that these two species contributed the most to local green tides in this region. While U. pertusa was relatively stable in frequency during 2015 to 2020, U. ohnoi increased 16% in frequency in 2020 (36.84%), which might be associated with rising sea surface temperature from which U. ohnoi could benefit. Two species (Ulva flexuosa, Ulva procera) of origins of Europe should be continuously monitored. The findings of this study provide valuable information and molecular genetic data of genus Ulva occurring in southern coasts of Korea, which will help mitigate negative influences of green tide events on Korea coast.