• Title/Summary/Keyword: 해양관측센서

Search Result 135, Processing Time 0.026 seconds

The Validation of chlorophyll-a band ratio algorithm of coastal area using SeaWiFS wavelength (SeaWiFS 밴드역에 의한 연안해역의 엽록소 밴드비율 알고리듬 검증)

  • 정종철;유신재
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.37-45
    • /
    • 2000
  • Since being launched for ocean observing in 1997, the SeaWiFS sensor has supplied data on ocean chlorophyll distribution and environmental conditions of the atmosphere. Until now, a lot of SeaWiFS data have been archived and utilized for ocean monitoring and land observation. The SeaWiFS sensor has 1km spatial resolution, therefore, it is difficult to obtain data at the coastal zone. Since atmospheric correction algorithms at the coastal area have not been confirmed for chlorophyll algorithm, the ocean color data analysis for coastal zone is not common. In particular, domestic coastal areas have high suspended sediments concentrations and higher absorption influence of colored dissolved organic matter (CDOM), released from in-land, than open-sea. Thus, a useful algorithm for analysis of chlorophyll distribution in domestic coastal areas has not been developed. In this study, empirical algorithms, using data from the ocean color sensor, were developed for monitoring of chlorophyll distribution of coastal areas. In the process of the development of the algorithms, we can find that the red band (665nm) should be used for analyzing of domestic coastal areas near the Yellow Sea.

Perspectives on the Applicatio of Remote Sensing for Observation of Ocean Environments (해양환경관측을 위한 원격탐사의 활용과 그 전망)

  • 유신재;정종철
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.277-288
    • /
    • 1999
  • The aim of this review is to provide perspectives on the application of remote sensing techniques for observation of marine environmental changes on various spatio-temporal scales. Currently available remote sensing technologies are reviewed and future direction is suggested. For better utilization of remote sensing, a comprehensive plan should be developed by a demand-side and problem-solving approach. Marine environmental changes should be observed on proper spatio-temporal scales where the processes occur. For appropriate observation and monitoring of various environmental changes in coastal regions, more sensors must be utilized. Platforms other than satellites should also be utilized to expand the spatio-temporal scales of observation. Calibration/validation activities, required for accurate interpretation of remotely sensed data, could utilize buoys and ship-of-opportunity sensors. It is desirable that such systems by developed as a part of an integrated monitoring network.

Performance evaluation of Wave observation system using GPS (GPS를 이용한 파고 관측 시스템의 성능 평가)

  • Huh, Yong;Hwang, Chang-Su;Kim, Dae Hyun;Heo, Sin;Kim, Joo-Youn;Lee, Kee-Wook;Hong, Sung-Doo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.357-362
    • /
    • 2012
  • Despite the Wave observations data is very important information to human life at sea, the technology development and research for wave equipments are lacking. In this study, the wave observation system using GPS was evaluated the quality of wave observation data by comparing of long-term observations. The result of the comparison of the acceleration sensor (Hippy-40) and GPS sensor (Mose-1000), the correlation coefficient of the significant wave height and significant wave periods is 0.997 and 0.990 respectively. Also in case of BIAS, the significant wave height is 0.014 m, the significant wave period is -0.212 sec. It makes no significant differences whether the acceleration sensor (Hippy-40) and GPS sensor (Mose-1000). These results of the wave observation data using GPS quality will be evaluated as very good.

A real-time image-based sea fog observation system based on local lighthouse (항로표지 거점을 활용한 실시간 영상기반 해양안개 관측시스템 구축)

  • Mookun Kim;In-kwon Jang;Hyeong-ui Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.23-26
    • /
    • 2023
  • In the past, in observing the sea fog on the major sea route and providing real-time information for the safe operation of ships, a visibility sensor or a fog detector with similar operating principles was installed to observe local fog near the place where it was installed. However, it was somewhat unreasonable to immediately provide sea fog observation information to ships and users because the reliability of real-time observation information was somewhat low due to pollution caused by dust, salt, and pollen, or malfunctions of detection sensors by organisms such as spider webs. From 2019 to 2022, the Korea Meteorological Administration and the Ministry of Oceans and Fisheries collaborated to build a more reliable real-time image-based sea fog observation system in 100 regions of the Lighthouse on major sea routes across the country to collect reliable sea fog observation information every 10 minutes and perform real-time public service(webpage).

  • PDF

Data Processing System for the Geostationary Ocean Color Imager (GOCI) (천리안해양관측위성을 위한 자료 처리 시스템)

  • Yang, Hyun;Yoon, Suk;Han, Hee-Jeong;Heo, Jae-Moo;Park, Young-Je
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.74-79
    • /
    • 2017
  • The Geostationary Ocean Color Imager (GOCI), the world's first ocean color sensor operated in a geostationary orbit, can be utilized to mitigate damages by monitoring marine disasters in real time such as red tides, green algae, sargassum, cold pools, typhoons, and so on. In this paper, we described a methodology and procedure for processing GOCI data in order to maximize its utilization potential. The GOCI data processing procedure is divided into data reception, data processing, and data distribution. The kinds of GOCI data are classified as raw, level 1, and level 2. "Raw" refers to an unstructured data type immediately generated after reception by satellite communications. Level 1 is defined as a radiance data type of two dimensions, generated after radiometric and geometric corrections for raw data. Level 2 indicates an ocean color data type from level-1 data using ocean color algorithms.

Multiple Sensor Fusion Algorithm for the Altitude Estimation of Deep-Sea UUV, HEMIRE (심해무인잠수정 해미래의 고도정보 추정을 위한 다중센서융합 알고리즘)

  • Kim, Dug-Jin;Kim, Ki-Hun;Lee, Pan-Mook;Cho, Sung-Kwon;Park, Yeoun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1202-1208
    • /
    • 2008
  • This paper represents the multiple sensor fusion algorithm for the deep-sea unmanned underwater vehicles (UUV), composed of a remotely operated vehicle (ROV) 'Hemire' and a depressor 'Henuvy'. The performance of underwater positioning system usually highly depend on that of acoustic sensors such as ultra short base line(USBL), long base line(LBL) and altimeter. A practical sensor fusion algorithm is proposed in the sense of a moving window concept. The performance of the proposed algorithm can be observed by applying the algorithm to the Hemire sea trial data which was measured at the East Sea.

정지궤도 기상위성의 관측 데이터 전송 시스템 구성 및 기술 동향

  • Kim, Jung-Pyo
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.4 no.1
    • /
    • pp.74-82
    • /
    • 2006
  • 정지궤도 상에서 기상 관측 임무를 수행하고 있는 주요 기상위성의 관측 데이터의 전송 및 분배 시스템의 구성 현황 및 주요 전송 파라미터를 분석하고 현재 개발되고 있는 통신해양기상위성의 관측 데이터 전송 시스템 구성 및 채널별 주요 전송 파라미터를 제시한다. 제한된 기상 주파수 전송 대역에 대해 갈수록 고성능화 되어가는 기상 센서에 따른 대용량 기상관측 데이터 전송 및 분배를 위한 전송 방법 및 주파수 대역의 변경, 지상망 및 상업용 위성 통신망의 활용방안을 살펴본다.

  • PDF

초고주파 라디오미터 센서를 이용한 적조 관측 실험

  • 김용훈;김성현;박혁;최준호;이호진;최승운;최재연;서승원
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.449-454
    • /
    • 2004
  • 심각한 환경문제인 적조 피해를 줄이기 위해서 효과적인 모니터링 기술이 절실히 요구되고 있다. 본 연구에서는 초고주파 라디오미터 센서를 이용한 효과적인 적조 모니터링에 대한 가능성을 조사하였다. 초고주파 라디오미터를 이용해 관측되는 밝기 온도의 차이로 적조 해수를 모니터링 할 수 있다는 아이디어에 기반하여 연구를 수행하였다. 본문에서는 이론적인 배경과 가능성 확인을 위한 실험과정, 결과가 서술되어 있다 실제 해양에서의 측정 실험에서 적조지역의 밝기 온도가 청정지역의 밝기 온도보다 높게 측정되었다. 결론으로, 본 연구를 통하여 초고주파 라디오미터를 이용한 적조 모니터링이 가능함을 확인하였다.

  • PDF

Ocean Scanning Muti-spectral Imager (OSMI) Pre-Launch Solar Calibration Radiometric Response Analysis (Ocean Scanning Muti-spectral Imager (OSMI) 발사전 태양광 보정의 복사 응답 분석)

  • 조영민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.198-199
    • /
    • 2000
  • 다목적 실용위성 (KOMPSAT) 1호기에 탑재되는 해양관측카메라 Ocean Scanning Multi-spectral Imager (OSMI)는 해양 결상계의 노화에 따른 성능 변화 감지 및 보정을 위해 태양광 보정을 궤도운영 중 수행한다. 태양광 보정의 구조 및 광학적 특성을 분석하고 OSMI 주요 관측파장대역별로 태양광 보정계의 출력신호량을 예측하였다. 이 분석은 OSMI 센서보정 계획 및 영상 품질 이해에 유용할 것이다. (중략)

  • PDF

해양기상신호표지 구축현황

  • Jeong, Gyeong-Gyu;Kim, Hyeok;Park, U-Gyeong;Choe, Dae-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.103-104
    • /
    • 2018
  • 항만, 연안해역의 주요지점에 위치한 항로표지시설에 해양기상 관측센서를 설치하여 국지적 해양기성 정보를 실시간 제공으로 해양교통안전을 도모하고자 해양기상신호표지를 구축하였음.

  • PDF