• Title/Summary/Keyword: 해수 수송량

Search Result 53, Processing Time 0.017 seconds

Estimation of Spatial Accumulation and transportation of Chl-$\alpha$ by the Numerical Modeling in Red Tide of Chinhae Bay (진해만 적조에 있어서 수치모델링에 의한 Chl-$\alpha$의 공간적 집적과 확산 평가)

  • Lee Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The summer distribution of $Cha-{alpha}$ and physical processes for simulating outbreak region of red tide were estimated by the Eco-Hydrodynamic model in Chinhae Bay. As a result of simulation of surface residual currents, the southward flow come in contact with the northward flow at the inlet and western part of bay in case of windlessness and below wind velocity 2 m/sec. As wind velocity increases, the velocity and direction of currents were fairly shifted. The predicted concentration of $Cha-{alpha}$ exceeded 20 mg/㎥ in Masan and Haengam Bays, and most regions were over 10 mg/㎥, which meant the possibility of red tide outbreak. From the results of the contributed physical processes to $Cha-{alpha}$, accumulation sites were distributed at the northern part of Kadok channel, around the Chilcheon island, the western part of Kajo island and some area of Chindong Bay. On the other hand, inner parts of the study area such as Masan Bay were estimated as the sites of strong algal activities. Masan and Haengam Bay are considered as the initial outbreak region of red tide by the modeling and observed data, and then red tide expanded to other areas such as physical accumulation region and western inner bay, as depending on environmental variation. The increase of wind velocity led to decrease of $Cha-{alpha}$ and enlargement of accumulation region. The variation of intensity of radiation and sunshine duration caused to rapidly fluctuation of $Cha-{alpha}$: however, it was not largely affected by the variation of pollutant loads from the land only.

  • PDF

Numerical Study of a Droplet Movement for the Ocean $CO_2$ Sequestration ($CO_2$해양처리를 위한 액적 거동 시뮬레이션 기초연구)

  • Jung Rho-Taek;Kang Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • In the situation which Russia's ratification of the Kyoto protocol at February,2004, ANNEX I nations must reduce GHG(Green House Gas) discharge rate from 2008 by 2012 to the reduction level at 1990. We introduce the CO₂ ocean sequestration that is one of promising method for getting the stable CO₂ concentration in the atmosphere. There are four categories : ocean transportation technique, ocean initial dissolution technique, ocean deep current evaluation technique, and ocean biological evaluation technique. In this paper, we carried out the fundamental numerical study on the ocean initial dissolution technique, when the Liquidized CO₂ is emitted at the deep ocean, It is very important to the dissolution rate of movable CO₂ interface because it Is directly impact to the ocean organism. In order to investigate the relation of the interface movement and rate of the dissolution, we develope CR(Computational Fluid Dynamics) code that was constructed by the finite volume method based on the unstructured mesh, and a droplet's boundary surface can move and one direction dissolution from disperse phase into continuous phase adopted as its physics be. This study clarifies hydrodynamic relation between solubility and movement of the droplet through the verification of the Cm code.

  • PDF

Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses (동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계)

  • Rho, TaeKeun;Lee, Tongsup;Kim, Guebuem;Chang, Kyung-Il;Na, TaeHee;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.413-430
    • /
    • 2012
  • To understand the scales of the spatial distribution and temporal duration of the subsurface chlorophyll-a maximum (SCM) observed in the Ulleung Basin of the East Sea, we analyzed physical and chemical data collected during the East Asian Seas Time-series-I (EAST-I) program. The SCM layer occurred at several observation lines from the Korea Strait to $37.9^{\circ}N$ in the Ulleung Basin during August of 2008 and 2011. At each observation line, the SCM layer extended from the coast to about 200 km off the coast. The SCM layer was observed between 30 and 40 m depth in the Ulleung Basin as well as in the northwestern Japan Basin along $132.3^{\circ}E$ from $38^{\circ}N$ to $42.3^{\circ}N$ during July 2009, and was observed around 50 m depth in the northeastern Japan Basin ($135-140^{\circ}E$ and $40-45^{\circ}N$) during July 2010. From these observed features, we hypothesize that the SCM layer observed in the Ulleung Basin may exist in most of the East Sea and may last for at least half-year (from the early May to late October). The nutrient supply mechanism for prolonged the SCM layer in the East Sea was not known, but it may be closely related to the horizontal advection of the nutrient rich and low oxygen waters observed in the Korea Strait between a 50 m depth to near the bottom. The prolonged development of the SCM layer in the Ulleung Basin may result in high primary production and would also be responsible for the high organic carbon content observed in the surface sediment of the region.