• Title/Summary/Keyword: 해수펌프

Search Result 105, Processing Time 0.022 seconds

Efficiency of concentrating marine microplanktonic organisms using net sampler to verify the efficacy of a ship's ballast water treatment system (USCG phase-II 선박평형수 처리장치 성능 평가에 대비한 해양식물플랑크톤 네트 농축효율 비교)

  • Baek, Seung Ho;Lee, Min Ji;Shin, kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.136-143
    • /
    • 2016
  • To provide a type approval test for Ballast Water Treatment System (BWTS) of United States Coast Guard (USCG) Phase-II, this study examined the concentrating efficiency of nets for ${\geq}10{\mu}m$ and ${\leq}50{\mu}m$ sized phytoplanktonic organisms using different mesh sized nets ($5{\mu}m$ or $7{\mu}m$), different injection methods (hand breaker as semi-continuous assessment or pump as continuous assessment), and different filterability for the water volume. As a result of the t-test, the net concentrated efficiency between $5{\mu}m$ and $7{\mu}m$ mesh size was not significant (p > 0.05). The difference in the net concentrated efficiency for filtered natural water volume was not significant (p > 0.05). On the other hand, the Chl.a concentration in the continuous water injection method was significantly (p < 0.05) higher than that of semi-continuous water injection (t-test: t: -4.058). In the natural phytoplankton community, a total of 36 species were identified, including Bacillariophyta (17 species), Dinophyta (15 species), Euglenophyta (1 species), Dictyochophyta (2 species), and unidentified taxa (1 species). Among them, diatom Pseudo-nitzchia spp. was remarkably dominant. In particular, the net concentrated efficiency in all assessments was underestimated to be approximately 20-25%, which was caused by the small size Pseudo-nitzchia spp.. A width size of these genus might have passed through the $5{\mu}m$ or $7{\mu}m$ mesh size of the net. Therefore, net concentrated efficiency is dependent on the size of the observed species in natural water. This issue should be considered when determining the net volume for the type approval test of BWTS.

Conditions for Ideal Draw Solutes and Current Research Trends in the Draw Solutes for Forward Osmosis Process (정삼투 공정 적용에 적합한 유도 용질의 조건과 최근 동향)

  • Jun, Byung-Moon;Han, Sang-Woo;Kim, Yu-Kyung;Nguyen, Thi Phuong Nga;Park, Hyung-Gyu;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.132-143
    • /
    • 2015
  • Water is an essential resource for humans, but fresh water becomes scarce due to population growth and contamination of limited resources. Membrane technology has been widely used for water treatment, and forward osmosis is a process which does not need high hydraulic pressure for the operation. However, there are needs for (1) development of novel draw solutes causing low internal concentration polarization and reverse salt flux for high water flux, and (2) development of economic recovery method of the draw solutes in the diluted draw solution. Previous researches on the draw solute include $NaHCO_3$ which can be regenerated by about $60^{\circ}C$ heating, sucrose which can make potable water without additional process, and magnetic nanoparticles which can be regenerated by external magnetic field. Using the principles of forward osmosis process, sea water desalination, wastewater treatment, refinement of proteins, energy generation using pressure retarded osmosis process, preparation of diluted fertilizer, and growing algae for biofuel can be conducted. This paper summarizes characteristics of ideal draw solutes, recovery method of the draw solutes, and various application examples.

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System (반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현)

  • Sun-Ho, Park;Woo-Geun, Choi;Kyung-Yeol, Choi;Sang-Hyuk, Kwon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.562-569
    • /
    • 2022
  • The alarm monitoring technology applied to existing operating ships manages data items such as temperature and pressure with AMS (Alarm Monitoring System) and provides an alarm to the crew should these sensing data exceed the normal level range. In addition, the maintenance of existing ships follows the Planned Maintenance System (PMS). whereby the sensing data measured from the equipment is monitored and if it surpasses the set range, maintenance is performed through an alarm, or the corresponding part is replaced in advance after being used for a certain period of time regardless of whether the target device has a malfunction or not. To secure the reliability and operational safety of ship engine operation, it is necessary to enable advanced diagnosis and prediction based on real-time condition monitoring data. To do so, comprehensive measurement of actual ship data, creation of a database, and implementation of a condition diagnosis monitoring system for condition-based predictive maintenance of auxiliary equipment and piping must take place. Furthermore, the system should enable management of auxiliary equipment and piping status information based on a responsive web, and be optimized for screen and resolution so that it can be accessed and used by various mobile devices such as smartphones as well as for viewing on a PC on board. This update cost is low, and the management method is easy. In this paper, we propose CBM (Condition Based Management) technology, for autonomous ships. This core technology is used to identify abnormal phenomena through state diagnosis and monitoring of pumps and purifiers among ship auxiliary equipment, and seawater and steam pipes among pipes. It is intended to provide performance diagnosis and failure prediction of ship auxiliary equipment and piping for convergence analysis, and to support preventive maintenance decision-making.

Estimation of POC Export Fluxes Using 234Th/238U Disequilibria in the Amundsen Sea, Antarctica; Preliminary Result (남극 아문젠해에서 234Th/238U 비평형법을 사용한 유광대에서 심층으로의 입자상 유기탄소 침강플럭스 추정; 예비결과)

  • Kim, Mi Seon;Choi, Man Sik;Lee, Sang Heon;Lee, Sang Hoon;Rhee, Tae Siek;Hahm, Doshik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.109-124
    • /
    • 2014
  • In order to understand the carbon cycle in the Amundsen Sea of the Southern Ocean, the export fluxes of particulate organic carbon from the euphotic zone to deep water estimated using ${\psi}$/${\psi}$ disequilibrium method. Seawaters in 14 water columns were collected during February and March 2012, and analyzed for total and dissolved ${\psi}$, and particulate organic carbon. Total ${\psi}$ activities in the water column showed deficiency and excess relative to those of ${\psi}$ depending on the water depth. Deficiency of total ${\psi}$ in the euphotic zone showed mirror images both with chlorophyll-a and fluorescence, and was consistent with the loss of nitrate, which indicated the effect of biological activity. In addition, deficiency of total ${\psi}$ from deep water was associated with the increase of total dissolvable Fe/Mn concentration. Excess total ${\psi}$ activity presented below the euphotic zone might be related to particulate ${\psi}$ concentrated in this water depth. Mean export flux of ${\psi}$ estimated using the steady state model was $867{\pm}246dpmm^{-2}day^{-1}$. Mean export flux of particulate organic carbon, which were estimated by the product of total ${\psi}$ flux and ratio of POC/${\psi}$ ($7.08{\pm}4.27{\mu}molCdpm^{-1}$) in the sinking particles, was $5.9{\pm}3.9mmolCm^{-2}day^{-1}$. These fluxes were similar levels to those in the Weddell Sea during February and March 2008. Export ratios (ThE) relative to the primary production in the euphotic zone were in the range of 3-54% (av. 28%).