• Title/Summary/Keyword: 해수이송배관

Search Result 4, Processing Time 0.017 seconds

Analysis for Reducing Vibration Transmitted from the Sea-Water Conveying Pipe to the Hull (선체로 전달되는 해수 이송 배관의 진동 저감 분석)

  • Han, Hyung-Suk;Park, Mi-Yoo;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.145-151
    • /
    • 2008
  • URN(Underwater Radiated Noise) is one of the important performances of the battle ship related to the stealth. The main source of the URN is the structure-borne noise on the hull. And the pipe vibration transmitted to the hull is the main source of the structure-borne noise when the speed of the ship is lower than CIS(Cavitation Inception Speed). In this paper, the vibration isolator(rubber mount) for the pipe system is described in order to reduce the structure-borne noise transmitted to the hull. The vibrations on the sea-water conveying pipes and their supports are measured in order to know how much vibration occurs on those positions. Based on these test results, the improved design of the rubber mount is suggested by the parametric study and is verified numerically with the pipe and hull model.

  • PDF

Reduction of the Vibration Transmissibility for the Sea-Water Conveying Pipe in a Ship According to its Mount Shape (마운트 형상에 따른 선박용 해수 이송 배관의 진동 전달률 감소)

  • Han, Hyung-Suk;Jeong, Weui-Bong;Cha, Young-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.688-694
    • /
    • 2008
  • The reduction of the structure-borne noise is very important in order to reduce the noise of a ship. The noise at the high frequency range usually comes from the fluid flowing. The noise from the sea-water conveying pipe is one of the main source on these high frequency range. Therefore, the transmissibility variations are evaluated according to the shape of the rubber mount. The evaluations are performed with the frequency response function numerically and experimentally.

Analysis for Reducing Vibration Transmitted from the Sea-water Conveying Pipe to the Hull (선체로 전달되는 해수 이송 배관의 진동 저감 분석)

  • Han, Hyung-Suk;Jeong, Weui-Bong;Park, Kyung-Hoon;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1177-1184
    • /
    • 2008
  • URN(underwater radiated noise) is one of the important performances of the battle ship related to the stealth. The main source of the URN is the structure-borne noise on the hull. And the pipe vibration transmitted to the hull is the main source of the structure-borne noise when the speed of the ship is lower than CIS(cavitation inception speed). In this paper, the vibration isolator(rubber mount) for the pipe system is described in order to reduce the structure-borne noise transmitted to the hull. The vibrations on the sea-water conveying pipes and their supports are measured in order to know how much vibration occurs on those positions. Based on these test results, the improved design of the rubber mount is suggested by the parametric study and is verified numerically with the pipe and hull model.

Parametric Study of the Vibration Transmissibility for the Rubber Mount of the Seawater-Conveying Pipe in a Ship (선박의 해수 이송 배관용 고무 마운트의 진동 전달률에 대한 파라미터 연구)

  • Han, Hyung-Suk;Jeong, Weui-Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.290-302
    • /
    • 2009
  • Pipe system widely used in a ship is usually attached to the hull of a ship, and its vibration lead to structure-borne noise. Rubber mount is usually used as a vibration isolator of a pipe in a ship. In this paper, the effects of several factors, besides the stiffness and damping of the rubber mount, on vibration-isolating performance are taken into consideration. The parameters considered in this paper are hardness of the rubber material, painting on the rubber and deformation from clamping. Through the results of parametric study, the effective specifications of rubber mount are suggested to improve vibration-isolating performance. The performance under fluid flowing condition is calculated numerically and verified experimentally.