• Title/Summary/Keyword: 해수면 수온

Search Result 102, Processing Time 0.031 seconds

Paleoenvironments in Western Part of the East Sea, Korea, during the Late Quaternary Using Benthic Foraminifera (저서성 유공충에 의한 한국 동해 서부 해역의 제 4기 후반 고해양환경 연구)

  • 우한준;정혜경
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.493-511
    • /
    • 1995
  • Analysis of the Late Quaternary benthic foraminifera in the cores from the western part of the East Sea, Korea, indicates several distinct changes in the paleoenvironments during the deposition. The palecology of biofacies of Cores PC-1 from the upper slop and PC-2 from the rise shows several distinct changes in bottom water temperatures during the late Quaternary. The Core PC-4 from the Ulleung Basin generally consists of agglutinated genus, Muiliammina, and anaerobic calcareous genus, Bolivina, in biofacies, suggesting that the anoxic bottom condition was prevailed during the deposition. Benthic foraminiferal rare or barren zones in the Cores indicate the limits of water circulation caused by lower sea-level in the regions during the glacial period through the Late Quaternary. The changes of benthic foraminiferal biofacies reflect temporal and spacial variations in overall bottom environments, such as bottom water temperature, dissolved oxygen, and water circulation pattern. The benthic foraminiferal data can be used to interpret paleoclimatic conditions and predict global sea-level changes, and the results of these studies should be useful to understand the evolutional history of the East Sea through the Late Quaternary.

  • PDF

Ordinary Kriging of Daily Mean SST (Sea Surface Temperature) around South Korea and the Analysis of Interpolation Accuracy (정규크리깅을 이용한 우리나라 주변해역 일평균 해수면온도 격자지도화 및 내삽정확도 분석)

  • Ahn, Jihye;Lee, Yangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • SST (Sea Surface Temperature) is based on the atmosphere-ocean interaction, one of the most important mechanisms for the Earth system. Because it is a crucial oceanic and meteorological factor for understanding climate change, gap-free grid data at a specific spatial and temporal resolution is beneficial in SST studies. This paper examined the production of daily SST grid maps from 137 stations in 2020 through the ordinary kriging with variogram optimization and their accuracy assessment. The variogram optimization was achieved by WLS (Weighted Least Squares) method, and the blind tests for the interpolation accuracy assessment were conducted by an objective and spatially unbiased sampling scheme. The four-round blind tests showed a pretty high accuracy: a root mean square error between 0.995 and 1.035℃ and a correlation coefficient between 0.981 and 0.982. In terms of season, the accuracy in summer was a bit lower, presumably because of the abrupt change in SST affected by the typhoon. The accuracy was better in the far seas than in the near seas. West Sea showed better accuracy than East or South Sea. It is because the semi-enclosed sea in the near seas can have different physical characteristics. The seasonal and regional factors should be considered for accuracy improvement in future work, and the improved SST can be a member of the SST ensemble around South Korea.

A Recurring Eddy off the Korean Northest Coast Captured on Satellite Ocean Color and Sea Surface Temperature Imagery (위성의 해색 영상과 해수면온도 영상을 활용한 재발생 와동류에 관한 연구)

  • ;B.G.Mitchell
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 1999
  • A recurring eddy which located at the terminal end of the Korean East Warm Current was captured on ocean color and sea surface temperature imagery from satellite in spring and autumn. During late April, 1997 thermal infrared imagery from the NOAA AVHRR sensor and ocean color data from the Japanese ADEOS-I OCTS sensor, revealed this feature. The cold core had elevated chlorophyll concentrations, based on OCTS estimates, of greater than 3 mg/m$^3$ while the warmer surrounding waters had chlorophyll concentrations of 1 mg/m$^3$ or less. The elevated cholophyll accociated with this eddy has not been previously described. The eddy is also evident in SST images from autumn, but the SST in the core is warmer than in spring, and the warm jet flowing to the west of the eddy is also warmer is autumn compared to spring. A reccurring eddy and the high chlorophyll_a concentration area which surround around the eddy show on NOAA and SeaWiFS images in March 2, 1998. The eddy forms at the northern extent of the Korean East Warm Current as those waters collide with the cold, south-flowing Liman Current over a topographic shelf about 1500 m deep. This region of the eddy formation appears to have a strong connection with the dynamics of the western part of the polar front eddy field that dominates surface mesoscale structure in the central East (Japan) Sea. Interaction of the eddy with ARGOW tracked drifters, and evidence for its persistence are discussed.

Analysis of Abnormal Sea Surface Temperature in the Coastal Waters of the Yellow Sea Using Satellite Data for the Winter Season of 2004 (인공위성자료를 이용한 2004년 겨울철 황해 연안 해역 이상 수온 해석)

  • Moon, Jeong-Eon;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • We studied on the relationship between oceanic variation in the offshore and abnormal sea surface temperature rise in the coastal area of the Yellow Sea using a variety of satellite and in-situ data during winter 2004. In results of the satellite data, the average value of sea surface temperature in the Yellow Sea for 2003 was $10^{\circ}C$, and the average value of sea surface temperature for 2004 was $13^{\circ}C$. It was higher than those of the last year about $3^{\circ}C$. In results of the in-situ data, the average value of surface layer temperature in the Yellow Sea for 2003 was $9.85^{\circ}C$, and the average value of surface layer temperature for 2004 was $12.17^{\circ}C$. In the same satellite data, it was higher than those of the last year about $3^{\circ}C$. In results of the T-S diagram, we divided definitely into water mass of the Yellow Sea and the East China Sea in 2003. But we didn't divide definitely into water mass of the Yellow Sea and the East China Sea in 2004. The average values of air temperature and wind speed for 2003 were $5.23^{\circ}C$ and 4.81 m/s, respectively. And, the average values of air temperature and wind speed for 2004 were $5.61^{\circ}C$ and 4.52 m/s, respectively. So, These were similar. But the wind directions for 2003 were superior northwestern wind, and the wind directions for 2004 were various northern wind. The wind directions were different from each other. Therefore, the abnormal sea surface temperature rise in the coastal area of the Yellow Sea during winter 2004 were better related to oceanic variation in the offshore than influences of atmosphere. In the future, We will do in-depth study for these.

Pattern Analysis of Sea Surface Temperature Distribution in the Southeast Sea of Korea Using a Weighted Mean Center (가중공간중심을 활용한 한국 남동해역의 표층수온 분포 패턴 분석)

  • KIM, Bum-Kyu;YOON, Hong-Joo;KIM, Tae-Hoon;CHOI, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.263-274
    • /
    • 2020
  • In the Southeast Sea of Korea, a cold water mass is formed intensively in summer every year, causing frequent abnormal sea conditions. In order to analyze the spatial changes of sea surface temperature distribution in this area, ocean fields buoy data observed at Gori and Jeongja and reanalyzed sea surface temperature(SST) data from GHRSST Level 4 were used from June to September 2018. The buoy data were used to analyze the time-series water temperature changes at two stations, and the GHRSST data were used to calculate the daily SST variance and weighted mean center(WMC) across the study area. When the buoy's water temperature was lowered, the variance of SST in the study area trend to increase, but it did not appear consistently for the entire period. This is because GHRSST is a reanalysis data that does not reflect sensitive changes in water temperature along the coast. As such, there is a limit to grasping the local small-scale water temperature change in the coast or detecting the location and extent of the cold water zone only by the statistical variance representing the SST change in the entire sea area. Therefore, as a result of using WMC to quantitatively determine the spatial location of the cold water mass, when the cold water zone occurred, WMC was located in the northwest sea area from the mean center(MC) of the study area. This means that it is possible to quantitatively identify where and to what extent the distribution of cold surface water temperature appears through SST's WMC location information, and we could see the possibility of WMC's use in detecting the scale of cold water zones and the extent of regional spread in the future.

Long-term Change in Sea Level along the Eastern Coastal Waters of Korea using Tide Gauge, Water Temperature and Salinity (조위 및 수온, 염분 데이터를 이용한 동해 연안의 해수면 변화)

  • Park, Se-Young;Lee, Chung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.801-806
    • /
    • 2014
  • Long-term change in sea level along the eastern coast of Korea was illustrated using four tide-gauge station (Pohang, Mukho, Sokcho, Ulleung) data, water temperature and salinity. Seasonal variation in the sea level change was dominant. The sea level change by steric height derived from water temperature and salinity was relatively lower than that measured from the tide-gauge stations. Sea level rising rate per year by steric height increased with latitude. The effect of salinity(water temperature) on the sea level change is greater in winter(in summer).

Temporal and Spatial Analysis of SST in the Northeast Asian Seas Using NOAA/AVHRR data (NOAA/AVHRR 자료에 의한 동북아시아해역 표층해수온의 시공간분석)

  • Min, Seung-Hwan;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2818-2826
    • /
    • 2010
  • To study the spatial and temporal variations of sea surface temperature(SST) in the Northeast Asia sea during the period of 1985 to 2009. At first, the buoy data from Korea Meteorological Administration(KMA) and the satellite data have been matched up eight points. The root mean square error and the bias were increased towards the coastal shallow region. The study area which is divided 7 regions from Japan Meteorological Agency(JMA). We analyzed NOAA/AVHRR data by harmonic analysis which is comparison and analysis the center of the each regions. The mean SST varied between $8^{\circ}C$ to $26.0^{\circ}C$. The annual amplitude varied between $7^{\circ}C$ to $24^{\circ}C$. And the annual phase varied between end of July to end of August. Cross-correlation coefficients of mean SST, annual amplitude, and annual phase varied 0.57 to 0.85, -0.04 to 0.81 and 0.35 to 0.80 at all study area, respectively.

A Study of Relation of Winter Climate between El-Nino.La-Nina and Sea Surface Temperature in Korea (한국의 겨울 기후 및 해수 온도에 미치는 엘리뇨와 라니냐의 영향)

  • Bak, Byeong-Su;Min, Woo-Ki
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.2
    • /
    • pp.143-153
    • /
    • 1999
  • This study is analyzed the correlation between El-Nino and La-Nina and Korea's temperature and precipitation in summer and winter, and the results of this analysis are as follows: (1) The extraction of the occurrences of El-Nino reveals are 5, but La-Nina reveals 6 years. (2) The tendency of change of sea surface temperature around NINO.3 and that of or country are about the same, but the anomaly of Janggi and Pusan was much greater than that of Inchon. (3) The anomaly of sea surface temperature around NINO.3 and that of the temperature showed the similar changing tendency, the temperature of Korea has something to do with that of NINO.3sea surface temperature as the correlation of ground temperature with the temperature of sea surface showed 0.06. Anomaly warm winter has something to do with El-Nino because the temperature of our country was high when El-Nino phenomena appeared. But the precipitation over our country is not significant for La-Nina. (4) Temperature in El-Nino year is lower than normal in summer and higher than normal in winter. But precipitation is more in summer and winter of El-Nino year, but it is not significant of La-Nina year.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시.공간 변화)

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.101-104
    • /
    • 2006
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that can explain ElNINO effect to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpola. Front (SPF) dividing into the north and south part of the East sea, the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF,SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong '-' value, where KF had strong '+' value. The time of '+' and '-' value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking '+' value which time was March and October That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험 직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시${\cdot}$공간 변화)

  • Yoon, Hong-Joo;Byun, Hye-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.397-402
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that tan explain EININO effort to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) dividing into the north and south part of the East sea , the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF, SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong'-'value, where KF had strong'+'value. The time of'+'and'-'value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking'+'value which time was March and October. That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF