• Title/Summary/Keyword: 해수면 소음

Search Result 14, Processing Time 0.017 seconds

Method for eliminating source depth ambiguity using channel impulse response patterns (채널 임펄스 응답 패턴을 이용한 음원 깊이 추정 모호성 제거 기법)

  • Cho, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.210-217
    • /
    • 2022
  • Passive source depth estimation has been studied for decades since the source depth can be used for target classification, target tracking, etc. The purpose of this paper is to solve the problem of ambiguity in the previous paper [S.-il. Cho et al. (in Korean), J. Acoust. Soc. Kr. 38, 120-127 (2019)] that source depth is estimated in two points. The patterns of phase shift of Channel Impulse Response(CIR) reflected in ocean surface and bottom is used for removing ambiguity of the source depth estimation, and after removing ambiguity, source depth is estimated at one point through the intersection of CIR. In order to extract CIR in case of unknown source signal and continuous signal or noise, Ray-based blind deconvolution is used. The proposed algorithm is demonstrated through numerical simulation in ocean waveguide.

Underwater Target Localization Using the Interference Pattern of Broadband Spectrogram Estimated by Three Sensors (3개 센서의 광대역 신호 스펙트로그램에 나타나는 간섭패턴을 이용한 수중 표적의 위치 추정)

  • Kim, Se-Young;Chun, Seung-Yong;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-181
    • /
    • 2007
  • In this paper, we propose a moving target localization algorithm using acoustic spectrograms. A time-versus-frequency spectrogram provide a information of trajectory of the moving target in underwater. For a source at sufficiently long range from a receiver, broadband striation patterns seen in spectrogram represents the mutual interference between modes which reflected by surface and bottom. The slope of the maximum intensity striation is influenced by waveguide invariant parameter ${\beta}$ and distance between target and sensor. When more than two sensors are applied to measure the moving ship-radited noise, the slope and frequency of the maximum intensity striation are depend on distance between target and receiver. We assumed two sensors to fixed point then form a circle of apollonios which set of all points whose distances from two fixed points are in a constant ratio. In case of three sensors are applied, two circle form an intersection point so coordinates of this point can be estimated as a position of target. To evaluates a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program.

Improving target recognition of active sonar multi-layer processor through deep learning of a small amounts of imbalanced data (소수 불균형 데이터의 심층학습을 통한 능동소나 다층처리기의 표적 인식성 개선)

  • Young-Woo Ryu;Jeong-Goo Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.225-233
    • /
    • 2024
  • Active sonar transmits sound waves to detect covertly maneuvering underwater objects and detects the signals reflected back from the target. However, in addition to the target's echo, the active sonar's received signal is mixed with seafloor, sea surface reverberation, biological noise, and other noise, making target recognition difficult. Conventional techniques for detecting signals above a threshold not only cause false detections or miss targets depending on the set threshold, but also have the problem of having to set an appropriate threshold for various underwater environments. To overcome this, research has been conducted on automatic calculation of threshold values through techniques such as Constant False Alarm Rate (CFAR) and application of advanced tracking filters and association techniques, but there are limitations in environments where a significant number of detections occur. As deep learning technology has recently developed, efforts have been made to apply it in the field of underwater target detection, but it is very difficult to acquire active sonar data for discriminator learning, so not only is the data rare, but there are only a very small number of targets and a relatively large number of non-targets. There are difficulties due to the imbalance of data. In this paper, the image of the energy distribution of the detection signal is used, and a classifier is learned in a way that takes into account the imbalance of the data to distinguish between targets and non-targets and added to the existing technique. Through the proposed technique, target misclassification was minimized and non-targets were eliminated, making target recognition easier for active sonar operators. And the effectiveness of the proposed technique was verified through sea experiment data obtained in the East Sea.

A Study on the Telemetry System for the Inhabitant Environment and Distribution of Fish-III -Oxygen, pH, Turbidity and Distribution of Fishes- (어류의 서식환경과 분포생태의 원격계측에 관한 연구 -III -$용존산\cdot$pH 및 독도와 어류의 분포생태-)

  • 신형일;안영화;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.2
    • /
    • pp.136-146
    • /
    • 1999
  • The telemetry system for the oxygen, pH, turbidity and the distribution ecology of fishes was constructed by the authors in order to product and manage effectively in shallow sea culture and setnets fisheries, and then the experiments for the telemetry system carried out at the culturing fishing ground in coast of Sanyang-Myon, Kyoungsangnam-Do and the set net fishing ground located Nungpo bay in Kojedo province respectively from October, 1997 to June 1998.As those results, the techniques suggested in the telemetry system for which find out the relationship between the physical and chemical environment in the sea and the distribution ecology of fishes gave full display its function, and its system could be operated as real time system. This research can also provide base-line data to develope a hybrid system unifying the marine environment information and the fisheries resources information in order to manage effectively coastal fishing ground.

  • PDF