• Title/Summary/Keyword: 해석해

Search Result 69,991, Processing Time 0.063 seconds

Development of Analytical Solutions on Velocities of Regular Waves Generated by Bottom Wave Makers in a Flume (바닥 조파장치가 설치된 수로에서 규칙파의 유속장에 관한 해석해 개발)

  • Jung, Jae-Sang;Lee, Changhoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.58-71
    • /
    • 2022
  • Analytical solutions for two-dimensional velocities of regular waves generated by bottom wave makers in a flume were derived in this study. Triangular and rectangular bottom wave makers were adopted. The velocity potential was derived based on the linear wave theory with the bottom moving boundary condition, kinematic and dynamic free surface boundary conditions. Then, analytical solutions of two-dimensional particle velocities were derived from the velocity potential. The velocity potential and two-dimensional particle velocities which were derived as complex integral equations were numerically calculated. The solutions showed physically valid results as velocities of regular waves generated by bottom wave makers in a flume.

New Equivalent Static Analysis Method of Dynamic Behavior during Progressive Collapse (연쇄붕괴의 동적거동을 고려한 새로운 등가정적해석 기법)

  • Kim, Chee-Kyeong;Lee, Jae-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.239-246
    • /
    • 2007
  • In this paper a new equivalent static analysis method of dynamic behavior during progressive collapse is presented. The proposed analysis method uses the equivalent nodal load for the element stiffness which represents the dynamic behavior influence caused by the deletion of elements during progressive collapse analysis. The proposed analysis method improves the efficiency of progressive collapse analysis haying the iterative characteristic because the inverse of the structural stiffness matrix is roused in the reanalysis. By comparing the results obtained by this analysis method with those of GSA code analysis and time history analysis, it is shown that the results obtained by this analysis method more closely approach to those of time history analysis than by GSA code analysis.

Analysis for Dynamic Characteristics of T-shaped structure using Sensitivity Analysis and Reduced Impedance Method (감도해석과 축소임피던스합성법을 이용한 T형 구조물의 동특성 해석에 관한 연구)

  • 오재응;류지우;조준호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.231-237
    • /
    • 1994
  • 컴퓨터의 눈부신 발달에 힙입어 실험 또는 해석적 방법으로 일반 구조물이나 기계구조물의 진동특성을 손쉽고 정확하게 파악하는 것이 가능하게 되었다. 그런데 최근의 산업현장은 지금까지의 정확한 구조해석에만 그치지 않고 이를 바탕으로 강도 개선, 재료 절감을 통한 원가절감, 중량 최소화 문제등의 차원에서 동적인 특성의 변경을 요구하고 있다. 이러한 문제는 그 중요성에도 불구하고 여전히 설계자의 경험이나 시행착오에 의존하고 있는 실정이다. 본 연구에서는 구조물 결합부분에 주목하여 동특성의 변경 문제를 해석하고자 하였다. 즉 거의 모든 구조물이 결합부를 가지고 있는데 결합부 특성을 정확히 파악할 수 없기 때문에 리벳이나 보울트나 어떤 특수한 형태 결합부가 구조물의 특성에 주는 영향을 예측하기 어렵다. 이러한 결합부이 특성을 알아내고 구조물 동특성 변경 및 개선안을 제시하는 최적설계를 위해 감도해석기법은 아주 유효하게 쓰일 수 있다. 한편 구조물의 대형화, 복잡화는 구조물 동특성 해석에 더욱 많은 계산시간과 용량이 큰 전자계산기를 필요로 하게 되었으며, 분계의 결합부위가 변경되거나 결합형태가 변했을 때 전계의 동특성을 다시 해석할 필요없이 분계만의 정보로부터 전계의 동특성을 알아낼 필요가 생겼다. 이러한 의미에서 구조물의 분계로부터 전계의 동특성을 해석을 위한 부분구조합성법이 대두되게 되었다. 본 연구에서는 이러한 감도해석과 부분구조합성법의 공통된 문제를 일치화하고자 하였다. 즉 감도해석기법을 이용하여 필요한 구조물의 동특성에 부합하는 결합부의 최적한 설계변수를 규명하였고 이렇게 구해진 결합부의 설계변수와 분계의 정보를 알고리즘이 비교적 간단하고 오차가 적은 축소임피던스 합성법에 적용하여 전계의 동특성을 해석함으로써 감도해석기법과 축소임피던스 합성법의 통합적용이 최적설계와 이에 따른 동특성 해석에 효과적인 방법임을 보이고자 하였다. 대상구조물은 구조물 결합의 기본적인 형태인 T형을 선택하였다. T형 구조물은 분계 A(16개의 사각요소)와 분계 B(8개의 사각요소)로 이루어져 있으며 두개의 스프링으로 결합되어 있다. 설계변수는 강성에 국한하였으며 결합부의 결합형태는 탄성결합과 강결합으로 하였다. 감도해석과 축소임피던스 합성법에 의해 구해진 고유진동수와 FRF를 상용 유한 요소 해석 패키지인 MSC/NASTRAN을 통하여 검증하여 이 연구의 타당성을 검토하였다.

  • PDF

Application of Response Spectrum Method for Analysis of a Floor System Subjected to Dynamic Loads on Multiple Locations (복수 절점에 가진되는 건물 바닥판의 해석을 위한 응답스펙트럼 해석법의 응용)

  • 김태호;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.21-32
    • /
    • 2002
  • In general, the response spectrum analysis method (R.S.A) is widely used for seismic analysis of building structure. But, it is not common to apply R.S.A for the analysis of structural vibration caused by dynamic loads of equipments, machines and moving leads, etc. The time history analysis method(T.H.A) for the vibration analysis, compared with R.S.A, is very complex, difficult and time consuming. So the application of R.S.A, that is convenient to calculate maximum responses for structural vibration, is proposed in this study. At first, the procedure for the application of the R.S.A to calculate of the maximum vibration response induced by dynamic load applied on the single point is described. And then, the process, which can save the time and the memory for calculation of the maximum vibration response induced by dynamic loads on the multi-point is proposed, and the maximum structural response caused by moving loads are obtained. Lastly, the accuracy of the proposed method is verified by comparing the results of R.S.A to T.H.A for some example models.

A Study on the State Estimation Algorithm for DC System Analysis (직류시스템 해석을 위한 상태추정 알고리즘에 관한 연구)

  • Kwon, Hyuk-Il;Kim, Hong-Joo;Kim, Juyong;Cho, Yoon-Sung
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.754-758
    • /
    • 2018
  • Analysis methods in the power system are static analysis, dynamic analysis and online analysis, offline analysis. The static analysis is used for the existing power system analysis method and the static analysis is mainly used for PSS / E. However, in the real system where the value changes in real time which we are using, dynamic analysis is required which can be analyzed in real time for accurate analysis. Therefore, attention is focused on EMS (Energy Management System) and importance is increasing. Among the various EMS systems, we will cover state estimation, which is a static on-line analysis that can receive and interpret data from the acquisition point in real time. DC systems are spreading in various fields such as DC load, DC distribution, renewable energy. As such, much attention and attention are focused on the DC system. In this paper, we have studied the feasibility through the case study and the interpretation of the state estimation that can be applied to the DC system.

Blade Analysis Library Development of Dimension Reducible Modeling and Recovery Analysis for Composite Rotor Blades (복합재 로터 블레이드의 차원축소와 복원해석을 위한 블레이드 해석 라이브러리 개발)

  • Jang, Jun Hwan;Lee, Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.920-927
    • /
    • 2015
  • In this paper, numerical results of sectional analysis and stress recovery were compared with the results of VABS through the blade analysis library. The results of recovery analysis for one-dimensional model including the stiffness matrix is compared with the calculated three-dimensional stress results of three-dimensionial FEM based on the principle of virtual work. We discuss the configuration of the blade analysis library and compare verifications of numerical analysis results of VABS. Blade analysis library through dimensional reduction and stress recovery is intended to be utilized in conjunction with pre- and post-processing of the analysis program of the composite blade, high-altitude uav's wing, wind blades and tilt rotor blade.

Analytical Solutions for Predicting Movement Rate of Submerged Mound (수중둔덕의 이동율 예측을 위한 해석해)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 1998
  • Analytical solutions to predict the movement rate of submerged mound are derived using the convection coefficient and the joint distribution function of wave heights and periods. Assuming that the sediment is moved onshore due to the velocity asymmetry of Stokes' second order nonlinear wave theory, the micro-scale bedload transport equation is applied to the sediment conservation. The nonlinear convection-diffusion equation can then be obtained which governs the migration of submerged mound. The movement rate decreases exponentially with increasing the water depth, but the movement rate tends to increase as the spectral width parameter, $ u$ increases. In comparison of the analytical solution with the measured data, it is found that the analytical solution overestimates the movement rate. However, the agreement between the analytical solution and the measured data is encouraging since this over-estimation may be due to the inaccuracy of input data and the limitation of sediment transport model. In particular, the movement rates with respect to the water depth predicted by the analytical solution are in very good agreement with the estimated result using the discritization technique with the hindcast wave data.

  • PDF

Static Analysis of Frame Structures Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 골조구조물의 정적해석)

  • 최명수;문덕홍;정하용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • In static analysis of a variety of structures, the matrix method of structural analysis is the most widely used and powerful analysis method. However, this method has drawback requiring high-performance computers with many memory units and fast processing units in the case of analyzing accurately structures with a large number of degrees-of- freedom. Therefore, it's very difficult to analyze these structures accurately in personal computers. For overcoming the drawback of the matrix method of structural analysis, authors suggest the transfer stiffness coefficient method(TSCM). The TSCM is very suitable to a personal computer because the concept of the TSCM is based on the transfer of the stiffness coefficient for an analytical structure. In this paper, the static analysis algorithm for frame structures is formulated by the TSCM. We confirm the validity of the TSCM through the comparison of computation results by the TSCM, the NASTRAN, the matrix method of structural analysis and the analytical solution.

Seismic Access of Offshore Subsea Manifold using RSA and THA Seismic Analysis Results for Simplified Model (단순화 모델에서의 응답스펙트럼과 시간이력 내진해석 결과를 활용한 해양플랜트용 매니폴드 실제품의 내진강도 평가)

  • Lee, Eun-Ho;Kwak, Si-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • In this paper, for a seismic analysis of an offshore subsea manifold, Response Spectrum Analysis(RSA) and Time History Analysis(THA) were conducted under a various analysis conditions. Response spectrum and seismic design procedure have followed ISO19901-2 code. In case of THA, The response spectrum were converted into artificial earthquake history and both of Explicit and Implicit solvers were used to examine the characteristics of seismic analysis. For the verification, Various seismic analysis methods were applied on a single degree of freedom beam model and a simplified model of the actual manifold. The difference between the results of RSA and THA on the simplified manyfold model evaluated for the analysis of the actual manifold. Because THA is impossible in case of real complex structure such as a manifold, Safety of the actual manifold structure was accessed by using the RSA and the difference between the results of RSA and THA from the simplified model.

폭발성형 관통자 생성 모사 해석

  • Jeong, Su-Gyeong
    • Journal of the KSME
    • /
    • v.50 no.4
    • /
    • pp.46-49
    • /
    • 2010
  • 수리동역학 코드를 사용하여 폭발성형 관통자의 생성과정을 해석하고 다양한 해석기법을 개발하였다. 수치해석 결과 섬광 X선 장비를 사용한 정치시험 결과와 비교하여 해석 결과의 신뢰성을 확인하였다. 폭발성형 관통자의 관통성능 증대를 위하여 다양한 라이너 모델에 대한 수치해석을 수행하고, 그 결과를 비교하였다.

  • PDF